[发明专利]一种置信度比较方法及装置有效
申请号: | 201811641109.8 | 申请日: | 2018-12-29 |
公开(公告)号: | CN111382834B | 公开(公告)日: | 2023-09-29 |
发明(设计)人: | 胡锋杰 | 申请(专利权)人: | 杭州海康威视数字技术股份有限公司 |
主分类号: | G06N3/045 | 分类号: | G06N3/045;G06N3/082 |
代理公司: | 北京博思佳知识产权代理有限公司 11415 | 代理人: | 林祥 |
地址: | 310051 浙*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 置信 比较 方法 装置 | ||
本申请提供一种置信度比较方法及装置,所述方法应用于深度学习网络,可以通过获取深度学习网络中的特征提取子网络输出的用于置信度比较的变量参数,所述变量参数包括目标特征一和目标特征二;通过计算所述目标特征一与所述目标特征二之差比较置信度大小。本申请通过将两个变量参数的softmax计算等价于两个变量参数的减法操作,在保证算法结果完全不变的前提下,去除了softmax层,从而精简了深度学习网络的结构,解决了实际工程中softmax层计算耗时和精度损失的问题,提升了整个网络的性能。
技术领域
本申请涉及目标检测技术领域,尤其涉及一种置信度比较方法及装置。
背景技术
计算机视觉中的目标检测算法作为人工智能的一个热门技术,近年来得到了飞速发展,Faster RCNN是一种广泛应用的基于神经网络结构的目标检测算法。在Faster RCNN的候选区域生成网络(RPN)中,通过Softmax层计算可得到候选区域的置信度。
由于Softmax层的核心计算是求指数运算exp操作,一些智能芯片在硬件上没有设计针对exp操作的电路,不支持exp操作。因此,在实际工程中处理RPN网络的Softmax层时,一般采用软件层面模拟的方式实现,由于该层计算量大,软件模拟的方法会增加整个算法的耗时,目标检测效率低,且影响整个算法的检测效果。
发明内容
有鉴于此,为了解决现有技术中采用软件模拟的方法会增加整个算法耗时的问题,本申请提供一种置信度比较方法及装置,可以在保证算法结果完全不变的前提下,去除了softmax层,从而精简了深度学习的网络结构,解决了实际工程中softmax层计算耗时和精度损失的问题,提升了整个网络的性能。
具体地,本申请是通过如下技术方案实现的:
根据本申请实施例的第一方面,提供一种置信度比较方法,所述方法应用于深度学习网络,所述方法包括:
获取深度学习网络中的特征提取子网络输出的用于置信度比较的变量参数,所述变量参数包括目标特征一和对应的目标特征二;
通过计算所述目标特征一与所述目标特征二之差比较置信度大小。
作为一个实施例,通过计算所述目标特征一与所述目标特征二之差比较置信度大小,包括:
当计算出第一目标特征一与第一目标特征二之差为第一差值,计算出第二目标特征一与第二目标特征二之差为第二差值时,当第一差值大于第二差值时,确定第一目标特征一对应的置信度大于第二目标特征一对应的置信度。
作为一个实施例,所述深度学习网络包括:RPN子网络;
所述RPN子网络包括:隐含层、Conv层和Proposal层;
所述Proposal层用于获取所述Conv层输出的多个目标特征一和对应的多个目标特征二;计算每一对目标特征一和目标特征二对应的差值,根据多个差值的排序生成目标候选区域。
作为一个实施例,所述深度学习网络还包括:目标分类子网络;
所述目标分类子网络包括:Roipooling层、隐含层、Fc层和Frout层;
所述Frout层用于获取所述Fc层输出的多个目标特征一和对应的多个目标特征二;计算每一对目标特征一和目标特征二对应的差值,根据多个差值的排序和RPN子网络输入的目标候选区域生成目标区域。
根据本申请实施例的第二方面,提供一种置信度比较装置,所述装置应用于深度学习网络,所述装置包括:
获取单元,用于获取深度学习网络中的特征提取子网络输出的用于置信度比较的变量参数,所述变量参数包括目标特征一和对应的目标特征二;
计算单元,用于通过计算所述目标特征一与所述目标特征二之差比较置信度大小。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于杭州海康威视数字技术股份有限公司,未经杭州海康威视数字技术股份有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201811641109.8/2.html,转载请声明来源钻瓜专利网。
- 上一篇:输送器
- 下一篇:肝细胞癌中大血管侵犯的预测方法、试剂盒及其应用