[发明专利]一种行人重识别系统与方法有效
申请号: | 201910009061.7 | 申请日: | 2019-01-04 |
公开(公告)号: | CN109740541B | 公开(公告)日: | 2020-08-04 |
发明(设计)人: | 黄智勇;汪余杰;林爽;虞智;李银松;孙大明 | 申请(专利权)人: | 重庆大学 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06K9/62 |
代理公司: | 重庆博凯知识产权代理有限公司 50212 | 代理人: | 黄河 |
地址: | 400044 *** | 国省代码: | 重庆;50 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 行人 识别 系统 方法 | ||
本发明公开了一种行人重识别系统,包括用于计算待测图像p与初始参考图像集G中各参考图像的图像相似度的多流特征距离融合系统、用于根据图像相似度对参考图像进行排序的排序系统以及基于k邻域分布得分的重排序系统;重排序系统用于在初始排序列表的基础上,根据k邻域分布得分对初始排序列表中的参考图像进行重新排序。本发明还公开了一种行人重识别方法,采用本发明的行人重识别系统。本发明针对影响行人重识别的两个主要因素,即图像相似度计算与图像排序,分别进行了改进,任意一方面的改进与现有技术相比,均能提高行人重识别的准确性。两方面改进的结合则能得到最优的行人重识别效果。
技术领域
本发明涉及图像识别领域,尤其是一种检索图像中特定行人的行人重识别系统,还涉及一种行人重识别方法。
背景技术
行人重识别旨在从具有不同摄像机视角的参考图像集中检索相同的行人。行人重识别是视频监控和公共安全中的一个重要且具有挑战性的课题,目前的行人重识别一般是通过待测图像与参考图像的图像相似度在参考图像数据集中进行检索,然后根据相似度的高低进行排序,然后将与待测图像相似度最高的参考图像作为top-1。
对于行人重识别的相似度计算部分,由于受到摄像机角度和人体姿势的变化,行人重识别主要面临以下挑战:如图1中(a)所示,图像中的局部身体区域错位,红色框检测头部,但黄色框只能找到背景,提升了比较难度;如图1中(b)所示,遮挡,红色框可以检测到下半身区域,但在相应的黄色框中,下半身被遮挡;如图1中(c)所示,不同行人的相似外观,局部特征在此刻起重要作用,不同的行人可以通过红色和黄色检测框的细节信息来区分。
此外,由于参考图像数据集中既存在正样本,又存在负样本,负样本对图像相似度计算存在干扰,由于正样本存在拍照角度、遮挡等问题,这会造成某些角度或没有遮挡的负样本与待测图像的相似度高于正样本与待测图像的相似度,那么采用现有技术中单纯依赖相似度计算得到的排序不准确,甚至出现负样本排到top-1的情况。
发明内容
针对上述现有技术的不足,本发明提供一种行人重识别系统,解决现有技术中行人重识别准确率不高的技术问题,能够提高行人重识别准确率。
为了解决上述技术问题,本发明采用了如下的技术方案:一种行人重识别系统,包括用于计算待测图像p与初始参考图像集G中各参考图像的图像相似度的多流特征距离融合系统以及用于根据图像相似度对参考图像进行排序的排序系统;
所述多流特征距离融合系统包括逐级连接的多流特征提取网络、贡献系数自适应生成模块与距离融合模块;
多流特征提取网络包括用于提取输入图像的特征图的特征图提取网络,所述特征图包括全局特征图与n个区域特征图,输入图像包括待测图像p与参考图像;多流特征提取网络还包括用于分别从各特征图中提取相应特征的特征提取网络;多流特征提取网络能够将特征图输出给贡献系数自适应生成模块,并能将提取到的特征输出给距离融合模块;
贡献系数自适应生成模块包括激活比计算模块与用于根据各区域特征图的激活比计算各区域特征的贡献系数的贡献度映射模块;所述激活比是指区域特征图上的非零值点的数量与全局特征图上的非零值点的数量的比率;所述贡献系数是指全局特征或区域特征对融合距离的贡献程度;全局特征贡献系数恒为1;
距离融合模块用于根据待测图像p的各特征与参考图像的各特征计算相应特征之间的特征距离,并利用各特征的贡献系数将各特征距离融合成多流特征距离;然后采用多流特征距离作为图像相似度指标:多流特征距离越小,图像相似度越高,多流特征距离越大,图像相似度越低。
优选的,所述特征图提取网络包括用于在输入图像上分割出n-1个局部区域的区域分割网络、用于去除输入图像的背景的语义分割模块、用于提取输入图像的全局特征图的全局特征图提取网络以及用于根据区域分割网络所分割出的各局部区域在全局特征图上提取出相应区域特征图的池化模块;输入图像经语义分割模块去除背景后作为第n个区域特征图。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于重庆大学,未经重庆大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201910009061.7/2.html,转载请声明来源钻瓜专利网。