[发明专利]一种机动站自动目标检测与空间定位方法有效

专利信息
申请号: 201910019722.4 申请日: 2019-01-09
公开(公告)号: CN109596121B 公开(公告)日: 2022-10-14
发明(设计)人: 吴长彬;周鑫鑫;冯笑雨 申请(专利权)人: 南京师范大学
主分类号: G01C21/00 分类号: G01C21/00;G01C21/16;G01C11/00;G01C11/04;G01S19/45;G01S19/47
代理公司: 南京苏高专利商标事务所(普通合伙) 32204 代理人: 唐红
地址: 210000 *** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 机动 自动 目标 检测 空间 定位 方法
【权利要求书】:

1.一种机动站自动目标检测与空间定位方法,其特征在于:包括如下步骤:

步骤1、移动站采集进行硬件配置:在移动平台上集成有单目工业级全景相机、惯性测量单元IMU、速度编码器、同步器、全球定位系统GPS和计算机;

步骤2、采集影像:移动平台以正常速度行驶过程中,通过单目工业级全景相机实时进行实景影像获取,并生成全景影像;且姿态测量系统POS同步实时记录移动平台的行驶轨迹,即:通过速度编码器和同步器获取移动平台的速度和加速度信息,通过GPS获取单目工业级全景相机的实时位置信息、通过IMU获取单目工业级全景相机的实时外方位参数信息,对相机内方位元素参数进行纠正和获取高精确的外方位元素;

步骤3、对地理对象进行自动目标检测:先对规模样本进行对象分类、标签定义,然后在地理对象自动目标检测算法SSD基本模型基础上根据需求改进,构建并训练适用于目标需求的深度学习目标检测模型,最后将该目标检测模型应用于目标地理对象的监测中;所述步骤3中使用SSD算法进行模型构建与训练,并在不同尺度的特征图上进行预测,得到具有不同aspect ratio的结果,其详细过程为:

使用前面的前5层,然后利用astrous算法将fc6和fc7层转化成两个卷积层,再增加3个卷积层和一个pool层;不同层次的feature map分别用于default box的偏移以及不同类别得分的预测,最后通过nms得到最终的检测结果;SSD训练后将最后的模型保存为.pb文件,通过Flask即可调用,构建前端页面,输入要检测的图片即可进行目标标注,并返回json数据;

步骤4、获取像素地理对象和空间坐标:先根据影像像素框反算地理像素框法SSD识别出的地理对象得出识别框像素坐标,通过使用尺度不变特征变换SIFT搜索相邻站点的图片并完成特征点提取和特征点匹配;然后通过随机抽样一致法RANSAC消除错误匹配以减小误差;最后利用数字摄影测量中前方交会方法实现对象的地理定位,计算其空间坐标;

步骤5、拟合出多空间位置点的最佳位置点:移动平台移动时,其拍摄过程中对同一地物进行多次拍摄,并将含有同一对象的影像经过SSD识别后,不同的影像方位和尺度差异使得同一对象定位至空间中往往有存在多个位置不完全相同的坐标点,最后通过RANSAC法寻找最优位置点。

2.根据权利要求1所述的机动站自动目标检测与空间定位方法,其特征在于:所述步骤1中的移动平台采用机动车辆整体构成移动车载平台;所述步骤2中采用移动车载方式进行拍摄,获取全景影像,沿行车路线360度采集影像数据;所述移动车载平台上集成有定位定姿POS系统、全景信息采集系统、电源系统和计算机数据处理系统。

3.根据权利要求1所述的机动站自动目标检测与空间定位方法,其特征在于:所述步骤4中根据影像像素框反算地理像素框法SSD识别出地理对象得出识别框像素坐标,通过使用尺度不变特征变换SIFT搜索相邻站点的图片并完成识别框特征点提取和特征点匹配;通过SIFT提取局部特征的具体内容为:

首先,建立图像金字塔,金字塔一共有O组,每组有S层,第O组的图像由第O-1组的图像经过1/2降采样得到的,每组内的图像是由下到上进行高斯滤波得到的,在得到图像金字塔后,为检测出稳定的特征点,建立高斯差分尺度:

D(x,y,σ)=(G(x,y, k ′ σ)-G(x,y,σ))*I(x,y)

=L(x,y,k′σ)-L(x,y,σ)

上式中,G(x,y,k′σ)是高斯滤波器,I(x,y)是图像中点(x,y)的灰度值,O≧2;

为寻找尺度空间中图像的极值点,每一个采样点均需与它所有的邻近点比较,如果是所有点中最大值或者最小值时,就认为该点是图像在该尺度下的一个特征点;然后通过拟合三维二次函数来精确定位关键点的位置和尺度,并通过Hessian矩阵来去除边缘响应,通过下式判断是否为所需要的特征点:

上式中,H表示点(x,y)处的Hessian矩阵:

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京师范大学,未经南京师范大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201910019722.4/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top