[发明专利]一种基于模糊理论和神经网络的测井相识别方法有效
申请号: | 201910042398.8 | 申请日: | 2016-08-30 |
公开(公告)号: | CN109800863B | 公开(公告)日: | 2023-05-23 |
发明(设计)人: | 李忠伟;张卫山;宋弢;卢清华;崔学荣;刘昕;赵德海;何旭 | 申请(专利权)人: | 中国石油大学(华东) |
主分类号: | G06N3/0464 | 分类号: | G06N3/0464;G06N3/043 |
代理公司: | 北京科亿知识产权代理事务所(普通合伙) 11350 | 代理人: | 汤东凤 |
地址: | 266000 山东省*** | 国省代码: | 山东;37 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 模糊 理论 神经网络 测井 相识 方法 | ||
本发明提出了一种基于模糊理论和神经网络的测井相识别方法,首先,构建模糊区域卷积神经网络,将给出目标假设区域和目标识别放入同一个网络中,共享卷积计算,一个训练过程更新整个网络的权重;接下来,测井数据经过模糊区域卷积神经网络进行卷积和池化操作,卷积层和池化层交互,在卷积层和池化层进行模糊操作,从模糊区域卷积神经网络的第一层开始,逐渐增加模糊化的层数,针对不同的数据集调整模糊化层数,模糊区域卷积神经网络的最后一层得到特征向量,该特征向量通过一个滑动窗口将特征映射到一个低维向量中,然后将特征输入到两个全连接层,一个全连接层用来定位,另一个全连接层用来分类。
分案申请声明
本申请是2016年08月30日递交的发明名称为“一种大数据环境下模糊区域卷积神经网络的并行化方法”、申请号为201610762101.1的中国发明专利申请的分案申请。
技术领域
本发明涉及石油测井技术领域,特别是涉及大数据测井领域。
背景技术
测井信息和沉积是地层岩石物理性质的反映和控制因素,因此测井资料一直以来被作为油气储层沉积学研究中基础而重要的信息来源,测井相则是测井信息与储层沉积学特征之间的桥梁。对于大部分的油气井来说,测井资料是仅有的覆盖全井段地层的综合信息来源,因此测井相识别分析方法一直作为油气勘探与开发地质研究中一个最重要的研究手段。
然而,测井信息具有模糊性的特点,具有地质意义的多解性和模糊性。因此,测井相的识别与分析必须建立在大量已有的沉积特征与测井参数关系(测井响应)综合深度分析基础之上,同时还要参考野外露头、岩心录井和地震分析的结果,选取适合地质特点的建模方法,才能实现测井相的准确识别。
此外,由于缺乏有效的测井相自动识别方法和技术,目前的测井相识别主要是通过地质工作人员的人工识别实现的,并且由于人员经验差异、主观差异、测井数据的系统差异等因素,地质人员面对的数据量大、工作量繁重。不仅如此,地质人员的经验差异、主观因素、不同时期不同仪器测井数据的系统差异等因素,使得传统的测井相识别准确性大打折扣。
将大数据分析、深度学习等先进技术应用于油气地质研究是解决当前石油行业大数据分析资源闲置的探索与尝试。近年来,石油行业建立了大量的云数据中心,但利用率不高,资源被严重浪费。其中一个重要原因就是缺乏大数据处理平台以及相应的大数据技术来充分利用这些计算、存储资源。
建立高效、准确的测井相识别方法是现在油气地质研究的迫切需求。
发明内容
为解决现有技术的不足,本发明提出了一种大数据环境下模糊区域卷积神经网络的并行化方法。
本发明的技术方案是这样实现的:
一种大数据环境下模糊区域卷积神经网络的并行化方法,首先,构建模糊区域卷积神经网络,将给出目标假设区域和目标识别放入同一个网络中,共享卷积计算,一个训练过程更新整个网络的权重;
接下来,把输入的测井数据集分割成若干小数据集,多个工作流并行化经过模糊区域卷积神经网络进行卷积和池化操作,每一小数据集单独利用梯度下降进行训练;训练完成后,把结果输出到等待队列,在一轮训练完成后,读取输出队列,进行共享权重的同步更新操作,更新完成后,进行下一轮训练;在每一轮训练中,对于每个分割的小数据集的计算,都是在分布式基础上异步进行的,每计算出梯度值,就追加到列表当中来,当所有的小数据集都计算完毕后,同步更新模糊区域卷积神经网络的权重和偏置值,然后进行下一轮训练;在并行化识别方面,由Spout收集测井数据,然后将数据分发到各个Bolt节点中并行进行测井相识别,每个Bolt节点将识别结果输入到下一个Bolt节点中,统计其中的物体信息;
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国石油大学(华东),未经中国石油大学(华东)许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201910042398.8/2.html,转载请声明来源钻瓜专利网。