[发明专利]一种基于多级特征信道优化编码的图像轮廓检测方法有效

专利信息
申请号: 201910080334.7 申请日: 2019-01-28
公开(公告)号: CN109903301B 公开(公告)日: 2021-04-13
发明(设计)人: 范影乐;方琳灵;周涛;武薇;佘青山 申请(专利权)人: 杭州电子科技大学
主分类号: G06T7/13 分类号: G06T7/13
代理公司: 杭州君度专利代理事务所(特殊普通合伙) 33240 代理人: 朱月芬
地址: 310018 浙*** 国省代码: 浙江;33
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 多级 特征 信道 优化 编码 图像 轮廓 检测 方法
【说明书】:

发明涉及一种基于多级特征信道优化编码的图像轮廓检测方法。本发明针对输入图像I(x,y),首先基于相似度指标获取Gabor滤波器的最优尺度mopt和方向θopt,并将mopt和θopt作为NSCT的频率分离参数;然后将经过NSCT得到的轮廓子图与I(x,y)进行特征增强融合,实现对I(x,y)的初级轮廓检测;最后针对性地设计全卷积神经网络,包括由不同尺度FCN‑32s、FCN‑16s、FCN‑8s网络单元构成的特征编解码器,利用特征编码器的卷积与池化模块实现网络参数的主动学习,利用特征解码器的反卷积与上采样模块得到与I(x,y)对应的图像轮廓掩模图,实现多级特征信道的优化编码,完成图像轮廓的高效准确检测。

技术领域

本发明属于机器学习和图像处理领域,具体涉及一种基于多级特征信道优化编码的图像轮廓检测方法。

背景技术

轮廓信息对于图像数据的分割和识别具有重要意义,它将实现对图像目标区域的快速勾勒,有助于在有限特征维度上对图像进行分析和理解,因此图像轮廓自动检测是机器学习和图像处理领域的重要研究内容之一。基于区域梯度信息的传统检测算法通常考虑图像的线性滤波和局部方向性特征,例如基于图像局部能量方法,但它们一般并不涉及主动轮廓、纹理边缘以及区域边界等重要信息。目前基于深度学习的轮廓检测方法受到了关注,通过深度网络结构模拟人类视觉感知系统对视觉信息的处理过程,主动进行特征学习,有效地简化了原本复杂的特征提取和数据重建过程,但是这类方法普遍存在以下问题:(1)直接通过神经网络进行图像的分割和融合,会导致分割结果的不精细和特征信息的泛化。(2)未能将深度学习与传统基于特征的方法相结合,检测性能严重依赖于训练样本的数量和质量,对包括纹理背景在内的冗余信息过滤能力较弱。(3)部分方法虽然考虑了多源特征的提取问题,例如基于Gabor-NSCT和脉冲神经网络的SAR图像分割,它涉及了Gabor和NSCT在多尺度下的多源特征提取,然后将提取的Gabor特征和NSCT特征分别作为两个脉冲神经网络的输入进行训练,因此分割性能将严重依赖于Gabor和NSCT对于图像内容的感知能力,并没有充分利用多尺度下的多源特征信号融合编码能力,另外脉冲神经网络从模型层次和结构上也并不属于深度学习的范畴。例如还有基于Gabor-NSCT和视觉机制的图像轮廓提取方法,它同样涉及不同尺度下的多源特征提取,但考虑到视觉机制模型的运算能力,通常采用一种简化的融合编码方式,本质上缺失了以卷积神经网络训练为代表的学习过程,因此并不能真正体现多源特征在表达轮廓上的有效性。

发明内容

本发明针对现有技术的不足,提出一种基于多级特征信道优化编码的图像轮廓检测方法。

虽然NSCT变换在表征图像细节方面具有优越的性能,但其通常采取在尺度和方向上对分解结果进行某种加权方式下的优化编码,处理过程中加权参数的人为设定使得检测结果具有较大的不确定性。考虑到Gabor滤波器在感知图像目标尺度和方向时的有效性,因此本发明针对输入图像I(x,y),首先计算Gabor滤波器对应的最优尺度mopt和方向θopt,并将获得的mopt和θopt作为NSCT变换的频率分离参数,改变了传统上需要对Gabor和NSCT遍历所有尺度和方向的冗余融合模式;另外本发明将NSCT得到的轮廓子图与I(x,y)进行特征增强融合,有助于高效准确获得I(x,y)的初级轮廓响应E(x,y);接着将E(x,y)传入至由FSC-32S、FSC-16S、FSC-8S网络单元构成的全卷积神经网络,利用特征编码器的卷积与池化模块实现网络参数的主动学习,通过特征解码器的反卷积与上采样模块得到与I(x,y)对应的图像轮廓掩模图,并与I(x,y)进行点乘操作,最终实现图像轮廓的准确检测。具体包括如下步骤:

步骤1:获取输入图像I(x,y)的初级轮廓响应。首先计算输入图像I(x,y)的Gabor滤波器响应,结果记为如式(1)~(4)所示。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于杭州电子科技大学,未经杭州电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201910080334.7/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top