[发明专利]基于微波雷达的动作识别装置、方法及系统在审

专利信息
申请号: 201910090460.0 申请日: 2019-01-30
公开(公告)号: CN111507361A 公开(公告)日: 2020-08-07
发明(设计)人: 丁根明;田军;李红春 申请(专利权)人: 富士通株式会社
主分类号: G06K9/62 分类号: G06K9/62;G01S13/58
代理公司: 北京三友知识产权代理有限公司 11127 代理人: 王锴;陶海萍
地址: 日本神奈*** 国省代码: 暂无信息
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 微波 雷达 动作 识别 装置 方法 系统
【说明书】:

发明实施例提供一种基于微波雷达的动作识别装置、方法及系统,通过使用分类结果包含摔倒、疑似摔倒和正常动作的三分类识别模型且根据该三分类识别模型的连续输出结果进一步判定检测对象的动作,能够提高识别精度,降低误识别率,另外,该三分类识别模型由于区分了摔倒和疑似摔倒的分类,易于完成训练且训练得到的模型稳定性较高。

技术领域

本发明涉及信息技术领域,尤其涉及一种基于微波雷达的动作识别装置、方法及系统。

背景技术

近年来,动作识别在各个领域应用广泛。例如,人体动作识别在医疗健康、智能看护、动作捕捉等领域具有广泛的应用。当前社会老龄化趋势加剧,独居老人数量急剧增加,为老人提供危险动作识别服务能够在危险发生时及时告警并提供救助,因此具有重要的意义。

人体动作识别可基于视频影像或基于集成了惯性传感单元(IMU,Inertialmeasurement unit)的可穿戴设备收集的信息来进行,但是,基于视频影像的人体动作识别容易侵犯检测对象的家居隐私,而基于可穿戴设备的人体动作识别需要检测对象一直穿戴该设备,使用不便且识别精度不高。

为了解决上述问题,出现了基于微波雷达的人体动作识别方法,该方法通过微波雷达收集检测对象反射的微波信号进行动作的识别。

应该注意,上面对技术背景的介绍只是为了方便对本发明的技术方案进行清楚、完整的说明,并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本发明的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。

发明内容

发明人发现,现有的基于微波雷达的动作识别方法存在以下的问题:首先,利用微波雷达进行动作识别,受限于天线阵列、信号处理能力等问题,对人体反射信号进行动作描述不如视觉方式那么清晰直观,各动作之间的信号特征容易混淆,导致误识别率较高;另外,不同类型的动作在利用微波雷达信号特征进行描述时,某些类的动作产生的信号特征非常相似,因此,进行监督学习训练模型时,损失值变化不稳定且模型训练不稳定,导致训练困难且训练出的模型识别精度较低。

本发明实施例提供一种基于微波雷达的动作识别装置及方法、电子设备,通过使用分类结果包含摔倒、疑似摔倒和正常动作的三分类识别模型且根据该三分类识别模型的连续输出结果进一步判定检测对象的动作,能够提高识别精度,降低误识别率,另外,该三分类识别模型由于区分了摔倒和疑似摔倒的分类,易于完成训练且训练得到的模型稳定性较高。

根据本发明实施例的第一方面,提供一种基于微波雷达的动作识别装置,所述装置包括:特征提取单元,其用于对预设时间内的微波雷达的所有反射点的信息进行处理,获得属于检测对象的反射点的特征;分类单元,其用于将所述特征输入到基于深度学习的三分类识别模型中,输出所述三分类的分类结果,所述三分类的分类结果包括正常动作、摔倒或疑似摔倒;以及确定单元,其用于根据所述三分类识别模型在时间上连续输出的分类结果,确定所述检测对象是否发生了摔倒。

根据本发明实施例的第二方面,提供一种动作识别系统,包括:微波雷达,其具有信号发射部和信号接收部,所述信号发射部向检测对象所在的空间发射微波信号,所述信号接收部接收由包含所述检测对象的物体反射的反射信号,得到反射点的信息;以及根据本发明实施例的第一方面所述的装置,其根据所述反射点的信息进行所述检测对象的动作识别。

根据本发明实施例的第三方面,提供一种基于微波雷达的动作识别方法,所述方法包括:对预设时间内的微波雷达的所有反射点的信息进行处理,获得属于检测对象的反射点的特征;将所述特征输入到基于深度学习的三分类识别模型中,输出所述三分类的分类结果,所述三分类的分类结果包括正常动作、摔倒或疑似摔倒;以及根据所述三分类识别模型在时间上连续输出的分类结果,确定所述检测对象是否发生了摔倒。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于富士通株式会社,未经富士通株式会社许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201910090460.0/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top