[发明专利]一种机电装备数字孪生模型一致性保持方法有效
申请号: | 201910099067.8 | 申请日: | 2019-01-31 |
公开(公告)号: | CN109800531B | 公开(公告)日: | 2023-01-06 |
发明(设计)人: | 胡天亮;魏永利;张承瑞;陶飞 | 申请(专利权)人: | 山东大学 |
主分类号: | G06F30/23 | 分类号: | G06F30/23 |
代理公司: | 济南金迪知识产权代理有限公司 37219 | 代理人: | 王楠 |
地址: | 250199 山*** | 国省代码: | 山东;37 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 机电 装备 数字 孪生 模型 一致性 保持 方法 | ||
本发明涉及一种机电装备数字孪生模型一致性保持方法,运用于数字空间对物理空间的数字孪生模型一致性,所述物理空间与数字空间之间通过数字孪生映射模块,将物理空间内数据感知装置采集到的机电设备数据映射到数字空间,再通过数字空间内的数据处理模块、性能衰减更新模块、自更新数字孪生模型整体构建模块得到更新后的数字孪生模型。该机电装备数字孪生模型一致性保持方法通过对性能衰减零部件的模态分析,并通过模态中性文件解析函数静态链接库文件,将性能衰减零部件与其它关联零部件系统结合,构建完整性能衰减更新机电装备数字孪生模型,在使用周期保持与物理机电装备的一致性,为整个使用周期的数据贯通提供支持。
技术领域
本发明涉及一种机电装备数字孪生模型一致性保持方法,属于机电装备智能化与数字化技术领域。
背景技术
最近几年,随着CPS(Cyber-Physical Systems)技术的发展,数字孪生(DigitalTwin)技术逐渐成为学术界研究的热点。通过构建物理空间设备在数字空间的孪生体,物理空间和数字空间虚实共生,实现了数字世界对物理世界的全面、真实、客观、实时的映射。
随着技术不断发展,机电装备也开始向数字化、自动化、智能化和柔性化发展,其发展是衡量一个国家科技水平综合国力的重要标志。机电装备数字孪生模型的主要作用是对装备的几何、电气和物理特性进行描述,是机电装备复杂、时变、耦合数据的载体。其贯穿机电装备运行周期的整个阶段,以保证模型在整个使用周期数据的一致性,进而为整个使用周期的数据贯通提供支持。然而随着时间的变化,机电装备性能逐渐衰减变化,由于机电装备性能衰减的影响,一成不变的机电装备数字孪生模型不能反映物理机电装备的性能,如果没有数字孪生模型对物理装备的准确模型化描述,所谓的机电装备系统就是无源之水,无法落实。
因此,亟需一种模型一致性保持方法,通过将机电装备性能衰减更新到装备描述模型,实现机电装备数字孪生模型的性能自更新,进而保持描述模型与物理实体的一致性,为机电装备运营维护、故障诊断提供有力的模型支持。
发明内容
针对现有技术的不足,本发明提供一种机电装备数字孪生模型一致性保持方法。
本发明的技术方案如下:
一种机电装备数字孪生模型一致性保持方法,运用于数字空间对物理空间的数字孪生模型一致性,所述物理空间与数字空间之间通过数字孪生映射模块,将物理空间内数据感知装置采集到的机电设备数据映射到数字空间,再通过数字空间内的数据处理模块、性能衰减更新模块、自更新数字孪生模型整体构建模块得到更新后的数字孪生模型。
优选的,所述数据感知装置包括传感器、控制器、电子标签。
优选的,所述数据处理模块包括数据维护以及数据分析,其中数据维护包含映射数据库、数据清洗以及数据存储,数据分析将仿真数据与映射数据的累计数据响应分析与比较,映射数据库以及仿真数据库由分布式存储系统HBase存储;
先利用开源机器学习库Scikit-learn对映射到数字空间的感知数据进行数据清洗,并将清洗后的映射数据由分布式存储系统HBase存储,再通过累计数据响应分析判别映射数据与仿真数据是否有性能差异。
优选的,利用开源机器学习库Scikit-learn进行数据清洗,包括去除平滑噪声数据、处理缺失值、异常值、删除原始数据集中的无关数据和重复数据。
优选的,所述性能衰减更新模块包括综合性能衰减模型和性能衰减更新策略;
所述综合性能衰减模型包含Archard粘着磨损理论、非线性疲劳累计损伤模型和裂纹扩展理论,结合清洗的映射数据进行性能衰减计算仿真;
所述性能衰减更新策略由参数化尺寸建模、空洞增长模型以及连续损伤理论组成,通过引入内部状态变量来量化物质点处的局部退化,利用空洞增长模型完成对状态变量演化方程的定制,并将性能衰减计算仿真更新到关键零部件数字孪生模型中。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于山东大学,未经山东大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201910099067.8/2.html,转载请声明来源钻瓜专利网。