[发明专利]参数自整定的MIMO异因子全格式无模型控制方法在审

专利信息
申请号: 201910103032.7 申请日: 2019-02-01
公开(公告)号: CN109634108A 公开(公告)日: 2019-04-16
发明(设计)人: 卢建刚;陈晨 申请(专利权)人: 浙江大学
主分类号: G05B13/02 分类号: G05B13/02
代理公司: 浙江杭州金通专利事务所有限公司 33100 代理人: 刘晓春
地址: 310027 浙*** 国省代码: 浙江;33
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 模型控制 参数自整定 惩罚因子 输入向量 因子结构 复杂对象 控制通道 整定 费力
【权利要求书】:

1.参数自整定的MIMO异因子全格式无模型控制方法,其特征在于:

当被控对象为MIMO(Multiple Input and Multiple Output,多输入多输出)系统时,所述MIMO异因子全格式无模型控制方法计算k时刻第i个控制输入ui(k)的数学公式如下:

如果控制输入线性化长度常数Lu>1,则:

如果控制输入线性化长度常数Lu=1,则:

其中,k为正整数;m为所述MIMO系统控制输入总个数,m为大于1的正整数;n为所述MIMO系统输出总个数,n为正整数;i表示所述MIMO系统控制输入总个数中的第i个,i为正整数,1≤i≤m;j表示所述MIMO系统输出总个数中的第j个,j为正整数,1≤j≤n;ui(k)为k时刻第i个控制输入;Δuiu(k)=uiu(k)-uiu(k-1),iu为正整数;ej(k)为k时刻第j个误差,即k时刻误差向量e(k)=[e1(k),…,en(k)]T的第j个元素;Δyjy(k)=yjy(k)-yjy(k-1),yjy(k)为k时刻第jy个输出实际值,jy为正整数;Φ(k)为k时刻MIMO系统伪分块雅克比矩阵估计值,Φp(k)为Φ(k)的第p块,φj,i,p(k)为矩阵Φp(k)的第j行第i列元素,||ΦLy+1(k)||为矩阵ΦLy+1(k)的2范数;p为正整数,1≤p≤Ly+Lu;λi为第i个控制输入的惩罚因子;ρi,p为第i个控制输入的第p个步长因子;Ly为控制输出线性化长度常数,Ly为正整数;Lu为控制输入线性化长度常数,Lu为正整数;

针对MIMO系统,所述MIMO异因子全格式无模型控制方法将i的取值遍历正整数区间[1,m]内的所有值,即可计算得到k时刻控制输入向量u(k)=[u1(k),…,um(k)]T

所述MIMO异因子全格式无模型控制方法具有异因子特征;所述异因子特征是指针对正整数区间[1,m]内任意两个互不相等的正整数i与x,在采用所述控制方法对MIMO系统进行控制期间,至少存在一个时刻,使得如下(Ly+Lu+1)个不等式中至少有一个不等式成立:

λi≠λx;ρi,1≠ρx,1;…;ρi,Ly+Lu≠ρx,Ly+Lu

在采用所述控制方法对MIMO系统进行控制期间,对计算k时刻控制输入向量u(k)=[u1(k),…,um(k)]T的数学公式中的待整定参数进行参数自整定;所述待整定参数包含惩罚因子λi、步长因子ρi,1,…,ρi,Ly+Lu(i=1,…,m)的任意之一或任意种组合。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江大学,未经浙江大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201910103032.7/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top