[发明专利]新的一种模糊事件概率测度的定义方法在审

专利信息
申请号: 201910120828.3 申请日: 2019-02-02
公开(公告)号: CN111523355A 公开(公告)日: 2020-08-11
发明(设计)人: 顾泽苍 申请(专利权)人: 顾泽苍
主分类号: G06K9/00 分类号: G06K9/00;G06T3/40;G06T5/10;G06T5/20;G06T7/11;G06N20/00
代理公司: 暂无信息 代理人: 暂无信息
地址: 300010 天津市*** 国省代码: 天津;12
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 模糊 事件 概率 测度 定义 方法
【说明书】:

本发明提出一种新的模糊事件概率测度的定义方法,具体的特点是:模糊事件概率测度中的概率信息是考虑复数特征值的共同概率分布信息的方法,或者是考虑样本特征值处于被登录的特征值的概率分布的位置上的概率分布信息的方法;或者是考虑样本特征值处于被登录的复数特征值的共同概率分布,与被登录的特征值的概率分布的共同的位置上的共同的概率分布信息的方法,或者是考虑样本特征向量与被登录的特征向量之间最大几率的概率信息的方法。本发明的优点和积极效果是:可以提供一个将概率信息模糊信息全部利用起来的精准的尺度公式,可实现深度的图像识别,可实现图像识别的精度的定量评价,可实现识别结果的最佳化。

【技术领域】

本发明属于图像处理领域中的一种新的模糊事件概率测度的定义方法。

当前,人脸识别领域的技术竞争成为人工智能的主战场,其竞争的程度已达到非常激烈的程度。有日本电气公司公开了题为:“模式识别方法”(专利文献 1)。在这个专利里公开了一个将人脸五官位置的30个特征值组成的特征向量,然后用于训练同一人的人脸特征向量的集合内与不同人脸特征向量集合间的协方差,最后通过马氏距离(MahalanobisDistance)公式,得出样本特征向量与登录后的不同的人脸特征向量之间最小距离的特征向量所对应的人脸数据设定为识别结果。

作为拥有日本最高水平的人脸识别技术的日本电气公司之后又公开了:“人脸特征数据生成方法及装置,并且人脸类似度的算出方法与装置”(专利文献 2)。这个专利在上一个专利的基础上进一步对于每一个人脸图像的识别增加了一个信赖度指标的处理。这个信赖度指标是来自特征向量间的向量差的正态分布,特征向量的差向量的特征值间的方差,把人脸特征间的差向量的事后分布作为混合分布,从混合分布的对数尤度中导出来的等等,按照信赖度将模式之间的类似度算出,从而可以提高人脸识别的精度。

还是日本电气公司同韩国三星电子,在2004年又公开了一个人脸识别的专利:“人脸识别以及用于检索的特征向量抽出方法及其装置”(专利文献3)。在这个专利中公开了针对整体的人脸图像的第1正规化向量,第2正规化向量,通过傅立叶变换生成整体的傅立叶变换特征向量,再针对中心部位的人脸图像的第 3正规化向量,第4正规化向量,通过傅立叶变换生成中心部位的傅立叶变换特征向量。对于整体的人脸图像生成整体的强度特征向量,对于所定的局部区域的人脸图像生成局部的强度特征向量。上述第1正规化向量,第2正规化向量与全体的强度特征向量结合生成整体特征向量,上述第3正规化向量,第4正规化向量与局部的强度特征向量结合生成局部特征向量。以此构成用于检索的特征向量。

针对上述的发明日本电气公司在2006年又公开了题为:“人脸特征数据的生成方法与装置,以及人脸识别方法与系统”的专利(专利文献4)。该专利在专利文献3的基础上,又提出了通过图像的对比度不同生成信赖度值,以及通过图像的像素最大灰度值与最小灰度值的不同生成信赖度值,以及通过图像的像素分散与标准方差的不同生成信赖度值,以及通过图像的非对称指标的不同生成信赖度值,以及通过提取图像和反转图像之间的差分图像的像素值的相乘或相加所得到的值的不同生成信赖度值等的反映原图像状态的信赖度的新的计算方法。

经过十几年后日本电气公司就人脸识别技术又公开了最新的专利:“人脸识别装置,人脸识别方法,人脸识别程序,显示控制装置,显示控制方法以及显示控制程序”(专利文献5)。这个专利提出了按照人脸图像的局部进行识别的方法,根据人脸局部图像的类似度的阀值得出各个人脸局部图像之间的类似,模棱两可,不类似三个结果,按照每一个人脸局部图像的这三个结论作为整体人脸图像的识别的依据。

【公开文献】

【专利文献1】 特開平9-134432号公告

【专利文献2】 特開平2003-187229号公告

【专利文献3】 特開平特開2004-139596(P2004-139596A)

【专利文献4】 特開2006-344236(P2006-344236A)

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于顾泽苍,未经顾泽苍许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201910120828.3/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top