[发明专利]一种基于K-means和MMD的人脸图像深度聚类方法有效
申请号: | 201910146533.3 | 申请日: | 2019-02-27 |
公开(公告)号: | CN109948662B | 公开(公告)日: | 2020-10-20 |
发明(设计)人: | 陈晋音;林翔;杨东勇;俞山青;宣琦 | 申请(专利权)人: | 浙江工业大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G06K9/46;G06K9/00 |
代理公司: | 杭州天勤知识产权代理有限公司 33224 | 代理人: | 曹兆霞 |
地址: | 310014 浙*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 means mmd 图像 深度 方法 | ||
1.一种基于K-means和MMD的人脸图像深度聚类方法,包括以下步骤:
(1)采用预训练的自动编码器提取人脸图像的特征信息;
(2)采用K-means聚类方法对特征信息进行聚类,并计算每张人脸图像对应的特征信息被划分至K个类簇的概率p和每个类簇中该特征信息应该被该类簇吸引的概率q;
(3)将概率p和概率q之间的MMD距离作为自动编码器中编码器部分的损失函数,并构建自动编码器的损失函数,对自动编码器进行训练,采用反向梯度传播算法优化自动编码器的模型参数;
(4)当损失函数趋于稳定时,将人脸图像再次输入步骤(3)训练得到的自动编码器中,并对自动编码器输出的特征信息再进行K-means聚类,重复步骤(2)和步骤(3),直至满足终止条件时,停止循环,得到训练好的自动编码器;
(5)使用训练好的自动编码器提取待处理的人脸图像的特征信息,再使用K-means聚类方法对特征信息进行聚类,输出聚类结果。
2.如权利要求1所述的基于K-means和MMD的人脸图像深度聚类方法,其特征在于,自动编码器包括编码器和解码器,其中,
编码器包括依次连接的第一卷积层、池化层、第二卷积层、第三卷积层、第一全连接层以及第二全连接层;
解码器的结构与编码器对称,依次包括第一全连接层、第二全连接层,第三反卷积层、第二反卷积层、反池化层以及第一反卷积层;
预训练自动编码器时,损失函数L为:
其中,xi表示第i个人脸图像,f(xi)表示xi经过自动编码器后得到的输出。
3.如权利要求2所述的基于K-means和MMD的人脸图像深度聚类方法,其特征在于,在获得预训练的自动编码器后,提取自动编码器的编码器,将人脸图像输入至提取的编码器中,经计算获得每张人脸图像的特征信息。
4.如权利要求1所述的基于K-means和MMD的人脸图像深度聚类方法,其特征在于,步骤(2)的具体过程为:
(2-1)采用K-means聚类方法对特征信息进行聚类,确定K个聚类中心;
(2-2)聚类中心确定后,对于每张人脸图像对应的特征信息,计算该特征信息被划分至K个类簇的概率p,具体计算公式为:
其中,zi表示第i张图像经编码器得到的特征信息,cm表示第m个类簇的聚类中心,pim表示zi属于第m个类簇的概率;
(2-3)对于一张图片生成的特征信息,在确定其对应的概率p后,再针对概率p,计算每个类簇中该特征信息应该被该类簇吸引的概率q,具体计算公式为:
其中,qim表示第i张图像的特征信息被第m个类簇吸引的概率,pim和qim都是根据聚类结果而对图像i的特征信息做出的一个概率分布,且qim是对pim在各个类簇中所占概率比例的一个期望概率。
5.如权利要求1所述的基于K-means和MMD的人脸图像深度聚类方法,其特征在于,步骤(3)中,概率p和概率q之间的MMD距离的计算公式为:
其中,i和j表示任意两张图像,pi、pj、qi、qj分别表示图像i和图像j经K-means计算后得到的不同概率分布,k(·)表示两个向量的核函数运算,指定k(pi,pj)代表向量pj与向量pi之间的欧氏距离,F表示映射集合。
6.如权利要求5所述的基于K-means和MMD的人脸图像深度聚类方法,其特征在于,步骤(3)中,自动编码器的损失函数为:
L′=αMMD[F,p,q]+(1-α)L
其中,0<α<1是一个常数,L表示步骤(1)中,预训练自动编码器时的损失函数。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江工业大学,未经浙江工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201910146533.3/1.html,转载请声明来源钻瓜专利网。
- 彩色图像和单色图像的图像处理
- 图像编码/图像解码方法以及图像编码/图像解码装置
- 图像处理装置、图像形成装置、图像读取装置、图像处理方法
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序以及图像解码程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序、以及图像解码程序
- 图像形成设备、图像形成系统和图像形成方法
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序