[发明专利]一种基于深度学习的封装带检测系统及交互控制方法在审

专利信息
申请号: 201910152028.X 申请日: 2019-02-28
公开(公告)号: CN109738455A 公开(公告)日: 2019-05-10
发明(设计)人: 喻永生;王淼 申请(专利权)人: 燊赛(上海)智能科技有限公司
主分类号: G01N21/89 分类号: G01N21/89
代理公司: 北京知呱呱知识产权代理有限公司 11577 代理人: 丁彦峰;贺亚明
地址: 200000 上海市杨浦区隆*** 国省代码: 上海;31
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 封装带 人工智能 图像预处理模块 图像采集模块 图像识别算法 检测系统 人机交互模块 图像 封装 预处理 学习 报警提示信息 贴片电子元件 采集 主程序运行 交互控制 缺陷产品 缺陷类型 智能识别 出错率 标注 报警 后台 侧面 输出 检测 图片
【说明书】:

发明实施例公开了一种基于深度学习的封装带检测系统,所述基于人工智能深度学习的封装带检测系统包括基于后台主程序运行的图像采集模块、图像预处理模块、人工智能图像识别算法模块和人机交互模块,所述图像采集模块采集封装带正面、反面以及侧面的图像,所述图像预处理模块对图像采集模块采集的图像进行预处理,所述人工智能图像识别算法模块通过深度学习对经过图像预处理模块处理的图片进行智能识别,对存在封装缺陷的封装带进行报警,所述人机交互模块对人工智能图像识别算法模块的结果进行输出,显示封装缺陷产品标注图像、缺陷类型以及报警提示信息。本发明解决了解决现有贴片电子元件封装带检测效率低、出错率高的问题。

技术领域

本发明实施例涉及元件检测技术领域,具体涉及一种基于深度学习的封装带检测系统及交互控制方法。

背景技术

贴片电子元件在电器行业内具有广泛的应用,其组装密度高、电子产品体积小、重量轻,贴片元件的体积和重量只有传统插装元件的1/10左右,一般采用贴片电子元件之后,电子产品体积缩小40%~60%,重量减轻60%~80%,并且可靠性高、抗振能力强,易于实现自动化,提高生产效率。

在贴片电子元件的生产过程中,由于贴片电子元器件由于体积小,数量多,针脚细小易损,即便厂家在生产过程运用了诸如机器视觉检测等各种自动化检测手段,均难以避免在产品检测完后的封装过程中,出现意外的翻转、漏装等情况,所以为降低缺陷出厂率,厂家一般会在终端检测再额外安排一道人工视检环节,即由工人手动展开料带逐颗查看有无翻转、漏装等情况。人工检测效率低、出错率高,不能应对多种类型的故障缺陷。

发明内容

为此,本发明实施例提供一种基于深度学习的封装带检测系统及交互控制方法,以解决现有贴片电子元件封装带检测效率低、出错率高的问题。

为了实现上述目的,本发明实施例提供如下技术方案:

根据本发明实施例的第一方面,公开了一种基于深度学习的封装带检测系统,所述基于人工智能深度学习的封装带检测系统包括基于后台主程序运行的图像采集模块、图像预处理模块、人工智能图像识别算法模块和人机交互模块,所述图像采集模块采集封装带正面、反面以及侧面的图像,所述图像预处理模块对图像采集模块采集的图像进行预处理,所述人工智能图像识别算法模块通过深度学习对经过图像预处理模块处理的图片进行智能识别,对存在封装缺陷的封装带进行报警,所述人机交互模块对人工智能图像识别算法模块的结果进行输出,显示封装缺陷产品标注图像、缺陷类型以及报警提示信息。

进一步地,所述图像采集模块为多个工业相机,多个工业相机采集封装带内部贴片电子元件正面、反面以及侧面的图像,后台主程序控制工业相机状态检测、拍照触发和图像读取。

进一步地,所述图像预处理模块对工业相机采集的多角度图像进行图像尺寸调整,图像切割,图像灰度、曝光度、聚焦参数的调整以及图像数组张量化处理。

进一步地,所述人工智能图像识别算法模块包括:数据接收单元、深度学习推理单元和推理结果输出单元,人工智能图像识别算法模块通过大量故障贴片电子元件图像进行深度学习训练,训练完成后能够识别预先定义的多种类型的故障图像,将现场采集的图像作为输入,自动识别故障类型并进行分类标注进行输出。

进一步地,所述数据接收单元接收图像预处理模块输出的图像数据,将图像数据打包处理后发送至深度学习推理单元。

进一步地,所述深度学习推理单元利用深度学习图像分类网络判定图像类别,利用深度学习目标检测算法在图像中寻找设定目标,能够识别预先定义的多种图像类型,包括贴片电子元件正面、反面针脚缺陷,贴片电子元件侧面异常鼓胀类别,正面相机拍摄的图像被识别为贴片电子元件反面即针脚面,则判定出现贴片电子元件反装,反面相机拍摄的图像被识别为贴片电子元件正面即字符标识面,则判定出现贴片电子元件反装。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于燊赛(上海)智能科技有限公司,未经燊赛(上海)智能科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201910152028.X/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top