[发明专利]一种基于深度神经网络的端到端图像识别方法在审
申请号: | 201910154503.7 | 申请日: | 2019-03-01 |
公开(公告)号: | CN110008993A | 公开(公告)日: | 2019-07-12 |
发明(设计)人: | 陈康;胡孟晗;李庆利 | 申请(专利权)人: | 华东师范大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G06K9/00;G06N3/08 |
代理公司: | 上海蓝迪专利商标事务所(普通合伙) 31215 | 代理人: | 徐筱梅;张翔 |
地址: | 200241 *** | 国省代码: | 上海;31 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 图像识别 神经网络 端到端 神经网络模型 图像识别模组 分类数据 模型文件 图像采集 图像训练 训练模型 应用需求 云服务器 低延时 高效率 云端 打标 上传 下载 图像 场景 返回 | ||
本发明公开了一种基于深度神经网络的端到端图像识别方法,其特点是采用云服务器对上传的图像及打标分类数据进行基于深度神经网络模型的云端训练,且通过预训练模型对新的图像训练进行加速,完成训练后返回模型文件,并将其下载到图像识别模组,实现端到端的基于深度神经网络的图像识别。本发明与现有技术相比具有高效率和低延时的优点,端到端完成图像采集、训练以及识别,结构简单,操作方便,不仅克服了单BP神经网络的缺点,同时减少了模型的参数量,提高了模型的泛化能力,提升了识别的速度,可以为高效的图像识别提供支持,满足不同场景的应用需求。
技术领域
本发明涉及图像识别技术领域,尤其是一种从基于深度神经网络的端到端图像识别方法。
背景技术
深度神经网络在图像识别领域具有独特优势,它能模仿人的眼睛的结构,视野域的高效识别,比传统的BP神经网络具有参数更少,识别效率更高等优点。图像识别是机器视觉的一个分支,在应用中需要准确的图像识别结果,且对时延也有一定要求。后续的执行机构,如机器人、小车等,需要根据图像识别的结果进行决策控制。
目前,深度神经网络技术已经在工程学、模式识别、工业机器人、机器视觉等方面得到了广泛的应用。鉴于图像识别的巨大市场,国内外相关的仪器公司都在该方面进行了布局,包括爱信艾达、精工爱普生、松下、杭州美盛红外光电技术有限公司、丰田等公司。一些国内研究机构也在图像识别方面有较多的专利储备,如一种基于卷积深度网络的图像识别算法及系统(申请号:201710144957.7)、一种基于改进的卷积神经网络的图像识别方法(申请号:201710895881.1)、一种基于VGG深度卷积网络的自然场景图像识别方法(申请号:201810130178.6)、卷积神经网络的训练方法、图像识别方法及装置(申请号:201610942156.0)等。
在图像识别方面,天津科技大学在2018年申报发明专利:一种用于图像识别的神经网络模型(申请号:201810526107.8),其涉及技术领域偏向图像识别算法方面;天津帕比特科技有限公司在2017年授权的发明专利:一种基于神经网络识别设备类型的图像识别方法(申请号:201710919179.4),该专利的技术方案其图像识别方案不具有通用性,没有完全集成在一起。在实际应用过程中,针对具体的任务,研究人员或工程人员通常想同时图像采集,训练,识别一体完成,并且算法,模型内置在模组装置中,且识别目标多样,算法通用性强。目前,尚未有集合图像采集、训练和识别的一体化图像识别模组的报道。
发明内容
本发明的目的是针对现有技术的不足而设计的一种基于深度神经网络的端到端图像识别方法,采用卷积层提取图像信息和云端类似人类迁移学习新知识的方法,将获取的目标图像经打标分类后上传至云端服务器,基于深度神经网络对图像训练进行加速,完成训练后返回模型文件,并将其下载到图像识别模组中进行目标图像的识别,实现端到端模式的图像采集、训练和识别一体化,大大加快模型的收敛速度,并可为与图像识别有关的工业机器人、智能小车、智能分拣等领域内的应用研究和基础研究提供益处。
本发明的目的是这样实现的:一种基于深度神经网络的端到端图像识别方法,其特点是采用云服务器对上传的图像及打标分类数据进行基于深度神经网络模型的云端训练,且通过预训练模型对新的图像训练进行加速,完成训练后返回模型文件,并将其下载到图像识别模组,实现端到端的基于深度神经网络的图像识别,所述图像识别模组包括运算控制模块、摄像头模块和显示模块;所述摄像头模块将获取的目标图像经运算控制模块打标分类后与目标图像一起上传至云服务器;所述运算控制模块与摄像头模块和云端训练协同,依次实现目标图像的获取、训练和识别。
所述深度神经网络模型由卷积层、激活层或全连接层组成,卷积层提取图像信息,并根据图像识别的复杂程度,增加或减少深度神经网络的层数,进行人为的裁剪。
所述运算控制模块采用CPU、MCU或MMU运算器,以及与外界进行联络的通信器、模型下载和调试的入口。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华东师范大学,未经华东师范大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201910154503.7/2.html,转载请声明来源钻瓜专利网。