[发明专利]电液助力转向系统神经网络积分滑模控制方法有效
申请号: | 201910175674.8 | 申请日: | 2019-03-08 |
公开(公告)号: | CN109884894B | 公开(公告)日: | 2021-07-13 |
发明(设计)人: | 杜恒;王琳;陈锦达;陈赛;李雨铮 | 申请(专利权)人: | 福州大学 |
主分类号: | G05B13/04 | 分类号: | G05B13/04 |
代理公司: | 福州元创专利商标代理有限公司 35100 | 代理人: | 蔡学俊;丘鸿超 |
地址: | 350108 福建省福州市闽*** | 国省代码: | 福建;35 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 助力 转向 系统 神经网络 积分 控制 方法 | ||
本发明提出一种电液助力转向系统神经网络积分滑模控制方法,包括以下步骤:建立电液助力转向系统的数学模型;基于滑模方法和智能控制理论设计得到自适应RBF神经网络积分滑模控制器。本发明采用非线性积分滑模技术作为基本控制方法,其切换性能够使得控制系统对参数不确定性及外部干扰具有很强的鲁棒性,通过结合自适应RBF神经网络的方法实时逼近电液助力转向系统的动态行为,所设计的控制方法不仅不必推导适用于控制器设计所需的精确数学表达式,同时也不再需要泵源压力、工作压力和左、右侧轮胎阻力矩的测量。最终,所设计的神经网络积分滑模控制方法对模型不确定性和外部时变干扰具有很强的鲁棒性,并且能够及时、准确地跟踪电液助力转向系统的给定期望指令。
技术领域
本发明涉及电液助力转向控制技术领域,尤其涉及一种电液助力转向系统神经网络积分滑模控制方法。
背景技术
随着重型车辆转向系统对低速灵活性和高速稳定性要求的不断提高,电液助力转向系统以其动态响应快、输出力/转矩大被广泛应用于重型车辆。然而电液助力转向系统是一类复杂而又有代表性的系统,通常由转向机构、阀控双转向助力缸和轮胎转向动态组成。此外,整个系统各部分之间的耦合关系进一步增加了控制系统的复杂性,模型不确定性和外界未知干扰也使得实际轮胎转角更难以及时准确地跟踪给定期望指令。因此,如何设置一种有效的鲁棒控制器来保证电液助力转向系统操作的稳定性和精确性仍然是一个重大的挑战。
积分滑模控制不仅是非线性控制理论中的一种典型技术,同时也是解决转向跟踪控制问题的一种极其有潜力的方法。近几十年的研究表明,积分滑模方法是一种有效的处理匹配参数不确定性和外部扰动的鲁棒非线性控制方法。凭借积分滑模面的特殊特性,积分滑模控制不仅保证了系统运行初始时间的鲁棒性,而且与传统滑模方法相比进一步减小了稳态误差。因此,采用积分滑模方法去控制跟踪给定期望指令是电液助力转向系统的一种较好选择。
然而,虽然积分滑模方法能够有效地解决电液助力转向系统高度的非线性问题,但控制器设置所需的系统数学模型表达式严重制约了控制性能的进一步提高。
发明内容
本发明的目的在于提供一种鲁棒性强、跟踪性能高的电液助力转向系统自适应RBF神经网络积分滑模控制方法。本发明通过径向基神经网络(RBF神经网络,在不需要精确了解整个系统结构和相关参数的情况下重建电液助力转向系统整体动力学行,并通过将RBF神经网络与自适应参数更新技术相结合来获得一种自适应RBF神经网络控制方法,便可实现电液助力转向系统对给定期望指令跟踪控制过程中权重的连续自适应更新。
本发明具体采用以下技术方案:
一种电液助力转向系统神经网络积分滑模控制方法,其特征在于,包括以下步骤:
步骤1:建立电液助力转向系统的数学模型;
步骤2:基于滑模方法和智能控制理论获得自适应RBF神经网络积分滑模控制器。
优选地,步骤1具体包括以下步骤:
步骤11:对于通过伺服比例阀控制双转向助力缸驱动轮胎转动电液的助力转向系统:
左、右轮胎转向角之间的关系表示为:
式(1)中,α和β分别为左、右侧轮胎的转向角度,m为转向节臂的长度,L为拉杆长度,γ为转向臂与轴横梁的夹角,B为单轴两主销间的距离。
电液助力转向系统的拉格朗日方程为:
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于福州大学,未经福州大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201910175674.8/2.html,转载请声明来源钻瓜专利网。