[发明专利]一种基于特征融合的自适应权重深度学习目标分类方法有效

专利信息
申请号: 201910189578.9 申请日: 2019-03-13
公开(公告)号: CN109886357B 公开(公告)日: 2022-12-13
发明(设计)人: 王立鹏;张智;朱齐丹;夏桂华;苏丽;栗蓬;聂文昌 申请(专利权)人: 哈尔滨工程大学
主分类号: G06V10/764 分类号: G06V10/764;G06V10/80;G06V10/50;G06V10/82
代理公司: 暂无信息 代理人: 暂无信息
地址: 150001 黑龙江省哈尔滨市南岗区*** 国省代码: 黑龙江;23
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 特征 融合 自适应 权重 深度 学习 目标 分类 方法
【说明书】:

发明提供的是一种基于特征融合的自适应权重深度学习目标分类方法。目标粗检测;提取图像卷积特征和HOG特征,对HOG特征扩维处理;将SENet嵌入到Resnet网络框架,建立用于提取图像多特征权重的网络框架;计算卷积特征和HOG特征的自适应权重向量,制定特征融合策略,计算图像融合特征;建立基于精准二分类网络集的多目标分类框架。本发明将图像卷积特征与HOG特征融合,提取图像特征的自适应权重向量,设计深度学习网络构型和参数,构建精准的分类网络,该网络通过降低得分阈值来得到更多的候选框,提高目标检测的召回率;通过设计多个二分类网络,在多分类问题上具有更高的准确率。

技术领域

本发明涉及的是一种深度学习目标分类方法,特别是一种基于特征融合的自适应权重深度学习目标分类方法,属于图像识别技术领域。

背景技术

目标分类技术在众多领域应用广泛,近些年,人工智能领域发展如火如荼,目标分类技术已成为人工智能领域不可或缺的技术基础,目标分类可以为视频监控、自动驾驶等提供重要的信息源,如通过目标分类,提供图像中是否存在行人、车辆以及建筑物等,可以说精准的目标分类技术是众多领域亟待解决的技术瓶颈。早期,人们往往采用手工设计的特征来提取图像信息开展目标分类工作,特征包括颜色特征、纹理特征、形状特征等,但是通过这些特征,对图像中目标识别的准确率较低,原因是这些传统特征并不能代表图像中目标的本质,因此只采用传统特征及图像识别技术并不能满足图像精准分类的要求。

随着深度学习技术的兴起和发展,深度学习为图像目标高识别率提供了新的解决方案,在很多领域都取得了惊人的成绩,与传统特征相比,深度学习中卷积神经网络所提取的卷积特征,更能代表目标本质,并且具有强大的鲁棒性,在进行目标分类时通常用到网络最后一个卷积层所产生的特征图,该层的特征图比其他卷积层更为抽象,对目标分类效果较好,但是提取的特征丢掉较多细节信息,因此,卷积神经网络在区分类别相近的物体时,有时分类效果较差,如直接利用Faster-Rcnn网络实现对不同杯子开展精确分类时,很难将类别细化,降低了深度学习网络的识别准确率。

综上,只利用图像中的卷积特征或传统特征,都存在各自的局限性,更为合适的方法是采用多特征融合的方法,卷积特征在分辨目标大类方面更具优势,如目标是否为水瓶,而传统特征在分辨同一大类下的小类更具优势,如水瓶是矿泉水瓶还是可口可乐瓶。在传统特征中,HOG特征可以代表图像的全局特征,表征了图像的梯度信息,将其和卷积特征融合,可以提高分类的成功率。以前有部分学者采用将卷积特征与HOG特征相结合,往往先提取其中一种特征,在此基础上提取另一种特征,通过支持向量机分类,但是这种方式存在两个问题:首先,提取其中一种特征的环节势必弱化另一种特征;其次,该过程并未改变各特征的影响权重和损失函数,没有考虑到不同特征对分类准确率的增益是不同的。因此以前的方法的分类效果并不理想。

发明内容

本发明的目的在于提供一种能够实现图像中目标精准分类的基于特征融合的自适应权重深度学习目标分类方法。

本发明的目的是这样实现的:

(1)、目标粗检测

将含有Roi-Align层和FPN结构的Faster-Rcnn目标检测网络,根据softmax前的概率值,通过降低检测阈值,获取检测框,然后通过极大值抑制原理,筛选出符合条件的检测框,然后建立先验知识库,定目标范围;

(2)、提取图像卷积特征和HOG特征,对HOG特征扩维处理

提取图像特征在ResNet网络框架下完成,提取基本的卷积特征,获得N维的卷积特征图,在ResNet网络框架下增加OpenCV提取图像HOG特征的代码,改造ResNet网络框架,一张图像对应一个HOG特征图,将HOG特征图复制N份,扩展为N维HOG特征图;

(3)、将SENet嵌入到Resnet网络框架,建立用于提取图像多特征权重的网络框架

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于哈尔滨工程大学,未经哈尔滨工程大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201910189578.9/2.html,转载请声明来源钻瓜专利网。

同类专利
专利分类
×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top