[发明专利]一种基于体局部方向三值模式的肺结节纹理特征提取系统及方法有效
申请号: | 201910204748.6 | 申请日: | 2019-03-18 |
公开(公告)号: | CN109978846B | 公开(公告)日: | 2021-01-29 |
发明(设计)人: | 赵志杰;任聪;金雪松;王冉;韩小为;张立志;孙华东;范智鹏;陈永超;陶武超 | 申请(专利权)人: | 哈尔滨商业大学 |
主分类号: | G06T7/00 | 分类号: | G06T7/00;G06K9/46 |
代理公司: | 哈尔滨市松花江专利商标事务所 23109 | 代理人: | 刘冰 |
地址: | 150028 黑*** | 国省代码: | 黑龙江;23 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 局部 方向 模式 结节 纹理 特征 提取 系统 方法 | ||
一种基于体局部方向三值模式的肺结节纹理特征提取系统及方法。本发明涉及从肺部CT图像识别出肺结节方法。现有肺结节文理特征提取方法存在图像的部分纹理信息损失,而导致的肺结节识别率的问题。一种基于体局部方向三值模式的肺结节纹理特征提取系统及方法,基于VLBP模式对肺结节的相邻切片进行局部模式提取;对提取的局部模式利用正态分布函数进行局部自适应阈值的计算;将局部三值模式以中心像素为中心进行各方向的三值概率统计;将统计得到的各方向的三值概率作为特征向量和KNN分类算法来识别肺结节,并进行肺结节纹理特征识别结果的评价,得出识别结果是否正确。本发明方法提高了肺结节识别的准确率。
技术领域
本发明涉及一种从肺部CT图像识别出肺结节的系统和方法,特别涉及一种基于体局部方向三值模式的肺结节纹理特征提取系统及方法。
背景技术
癌症已成为影响人类健康的一大主要威胁。2018年9月12日发表于CA期刊的《2018全球癌症统计》一文中统计了全球185个国家、36种癌症的发病率与死亡率,其中肺癌、女性乳腺癌、结直肠癌的患病率位居前三,且亚洲地区的癌症死亡率远高于其他地区。近年来,由于城市污染极度严重,吸烟人数的大幅度增加,肺癌初期的发现率较低以及肺癌晚期患者的治愈率较低等综合因素,人群中肺癌的发病率正在逐年上升。由此可见,癌症已向人类的健康问题发出了警示。
在全世界医疗组织和科研人员的不断努力之下,肺癌的诊断方法和治疗水平得到了很大的改进和提高,而肺癌患者在死亡率和发病率方面并没有得到明显改善,主要原因有:(1)肺癌的病例特征不仅复杂难辨,而且恶化速度非常之快;(2)因为肺癌早期的症状不是十分显著,所以难以被及时发现,80%以上的患者发现病情时就已经处于癌症晚期;(3)当前影像诊断主要依赖人工阅片完成,然而,日益增加的图像数据也为人工阅片带来了极大的挑战。为了给医生提供有效的辅助诊断信息,智能图像处理技术正变得越来越重要。
为了给医生提供有效的辅助诊断信息,需要综合考虑各种因素,以深度学习和医学图像处理技术为基础的计算机辅助诊断(computer-aided diagnosis,CAD)作为一种智能图像处理方法,逐渐成为医学领域的研究热点。基于机器学习的CAD主要包括四方面的内容:①图像预处理;②图像分割及感兴趣区(region of interest,ROI)提取;③特征提取;④选择与分类识别。基于深度学习的诊断技术主要包括卷积神经网络,深度信念网络,深度迁移学习等,由此可见,以深度学习和医学图像处理技术为基础的计算机辅助诊断,具有良好的自适应性、自组织性及较强的学习功能、联想功能和容错功能,可以将从癌症患者图像中获得的所有数据信息进行一个系统的综合评价,为癌症计算机辅助诊断技术的研究开辟一条新途径,以大大提高辅助诊断能力。这不仅是癌症患者的福音,也可同时移植用于医学界其他疾病的辅助诊断或者其他领域,让机器能够更好的服务于人类。
纹理特征能够反映肺部CT图像病灶区域的许多特性,如光滑度、粗超度和规整度。目前,肺结节在纹理特征提取方面,大多数利用肺结节的二维纹理信息,例如局部二值模式(LBP)、灰度共生矩(GLCM)、小波变换、傅里叶功率谱、空间自相关和Gabor变换等。二维纹理特征信息忽略了CT图像纹理的时-空间分布特征,将导致在图像分类中丢失有用的纹理信息并降低肺结节的分类效率。因此为解决二维纹理信息不能完全反映肺结节特征等问题,引入三维纹理特征信息对结节特征进行全面的刻画。
近年来,Chaisaowong等人提出用3D GLCM进行肺纹理的特征提取,但是该方法需要肺的三维信息构建。Kohei Arai等人通过用从肺癌诊断中的计算机断层扫描(CT)图像数据中提取的2D和3D局部二值模式(LBP)方法比较研究。使用具有直方图相似性作为距离测量的概率神经网络(PNN)来执行肺部图像分类。实验结果表明,与2D LBP相比,3D LBP具有更高的精度性能。该方法虽引入了3D局部二值模式,但特征维度高,计算时间长且不能够较全面的反映三维纹理信息。因此在二值模式的基础上,X.Tan等人在LBP的基础上将其进行拓展延伸从而形成局部三值模式LTP,该方法使用固定阈值存在一定的主观因素,在阈值的选择上有一定的局限性,损失了图像的部分纹理信息。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于哈尔滨商业大学,未经哈尔滨商业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201910204748.6/2.html,转载请声明来源钻瓜专利网。