[发明专利]一种显微镜病理照片的宫颈癌病变细胞分类系统在审
申请号: | 201910217394.9 | 申请日: | 2019-03-21 |
公开(公告)号: | CN110334565A | 公开(公告)日: | 2019-10-15 |
发明(设计)人: | 李文勇;王乾;张立箎 | 申请(专利权)人: | 江苏迪赛特医疗科技有限公司 |
主分类号: | G06K9/00 | 分类号: | G06K9/00 |
代理公司: | 上海泰能知识产权代理事务所 31233 | 代理人: | 宋缨;钱文斌 |
地址: | 215024 江苏省苏州市*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 病变细胞 检测 细胞 标注 病理照片 分类网络 分类系统 网络模型 宫颈癌 显微镜 显微镜照片 分类模型 细胞分类 样本训练 分类 预测 | ||
本发明涉及一种显微镜病理照片的宫颈癌病变细胞分类系统,包括:检测网络模型和分类网络模型,所述检测网络模型利用不完全分类的细胞标注数据进行训练,训练完成后用于对显微镜照片中的细胞进行检测;所述分类网络模型根据不完全的细胞分类标注数据进行训练,训练完成后用于对检测到的细胞进行分类,并对细胞的具体类别进行预测。本发明使得利用不完全标注的样本训练得到病变细胞检测/分类模型成为可能。
技术领域
本发明涉及宫颈癌病变细胞分类技术领域,特别是涉及一种显微镜病理照片的宫颈癌病变细胞分类系统。
背景技术
宫颈癌在女性癌症死亡中致死率居于第四位。因此,宫颈癌的筛查对宫颈癌的治疗非常重要。子宫颈抹片检查是一种体检技术,广泛用于预防宫颈癌和发现具有潜在癌症的细胞。然而,诊断过程在很大程度上依赖于医生的经验,一方面非常耗时,另一方面,非常容易出现人为误判。由于计算机技术的最新发展,计算机辅助细胞检测技术能在细胞学筛查中起到重要作用的技术,其不但能够准确筛查、降低劳动强度及工作量,还可以消除由人工检测的心理适应性和疲劳等引起的误诊和漏诊。
目前,用于宫颈癌筛查的计算机辅助细胞检测技术大多数基于图像特征的方法。这些方法首先通过图像分割将细胞核、细胞质与背景分开,然后提取感兴趣区域的特征并执行特征选择,最后基于图像特征进行分类判别。尽管近期研究在细胞分割算法方面取得了进展,但由于显微图像中细胞的不规则,重叠以及染色不均等问题,准确的分割仍然是一个挑战。此外,各种算法的性能还受到特征设计和选择的限制,各种表现欠佳。
发明内容
本发明所要解决的技术问题是提供一种显微镜病理照片的宫颈癌病变细胞分类系统,使得利用不完全标注的样本训练得到病变细胞检测模型成为可能。
本发明解决其技术问题所采用的技术方案是:提供一种显微镜病理照片的宫颈癌病变细胞分类系统,包括:检测网络模型和分类网络模型,所述检测网络模型利用不完全分类的细胞标注数据进行训练,训练完成后用于对显微镜照片中的细胞进行检测;所述分类网络模型根据不完全的细胞分类标注数据进行训练,训练完成后用于对检测到的细胞进行分类,并对细胞的具体类别进行预测。
所述检测网络模型包括特征提取网络,区域候选网络和区域判定网络,所述特征提取网络用于将输入的显微镜病理照片图像转化为特征图谱;所述区域候选网络用于在得到的特征图谱中对检测目标可能出现的区域进行初步预测;所述区域判定网络根据区域候选网络和特征提取网络的输出,对区域候选网络预测得到的候选区域进行处理,产生目标检测的最终结果。
所述特征提取网络包括13个卷积层、5个池化层和3个全连接层,具体结构为依次设置的第一卷积层、第二卷积层、第一池化层、第三卷积层、第四卷积层、第二池化层、第五卷积层、第六卷积层、第七卷积层、第三池化层、第八卷积层、第九卷积层、第十卷积层、第四池化层、第十一卷积层、第十二卷积层、第十三卷积层、第五池化层和三个全连接层。
所述区域候选网络对于身处的特征图谱采用滑动窗口的方式遍历,对于每个特征点对应有K个锚点,对每个锚点有两部分输出,一个是窗口的分类,即分类层输出,表示一个位置上锚点属于前景和背景的概率,另一个是对应窗口的位置,即窗口位置回归,对应四个坐标值,标识二维图像空间中的窗口位置;在训练过程中舍弃IOU小于设置阈值或者超出边界的锚点。
所述区域判定网络首先将获得的候选框和原始图像导入,利用先前已经获得的特征图谱,使用共享的特征减少重复提取特征,接着结合候选框的位置,计算多任务损失,其中,包含两个同级输出,一个是最终的分类结果,另一个是输出包围框的位置,对候选框进行微调,通过利用Softmax Loss和Smooth L1 Loss对分类概率和窗口回归进行统一训练,得到最终的训练模型结果。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于江苏迪赛特医疗科技有限公司,未经江苏迪赛特医疗科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201910217394.9/2.html,转载请声明来源钻瓜专利网。