[发明专利]基于灰狼群优化LSTM网络的锂离子电池剩余寿命预测方法有效

专利信息
申请号: 201910238129.9 申请日: 2019-03-27
公开(公告)号: CN109993270B 公开(公告)日: 2022-11-15
发明(设计)人: 张长胜;吴琼 申请(专利权)人: 东北大学
主分类号: G06N3/00 分类号: G06N3/00;G06N3/04;G06N3/08;G01R31/367;G01R31/392
代理公司: 沈阳东大知识产权代理有限公司 21109 代理人: 刘晓岚
地址: 110819 辽宁*** 国省代码: 辽宁;21
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 狼群 优化 lstm 网络 锂离子电池 剩余 寿命 预测 方法
【说明书】:

发明提供一种基于灰狼群优化LSTM网络的锂离子电池剩余寿命预测方法,涉及锂离子电池技术领域。该方法首先获取锂离子电池的监测数据,并从中提取出锂离子电池容量数据;确定长短期记忆网结构,构造基于LSTM的锂离子电池剩余寿命预测模型;然后利用灰狼群算法优化锂离子电池剩余寿命直接预测模型中的关键参数,得到基于灰狼群优化LSTM网络的直接预测模型;利用优化数据确定最优的锂离子电池剩余寿命直接预测模型;最后利用最优的锂离子电池剩余寿命直接预测模型预测后期锂离子电池容量数据。本发明提供的基于灰狼群优化LSTM网络的锂离子电池剩余寿命预测方法,能够较为准确的预测锂离子电池剩余寿命。

技术领域

本发明涉及锂离子电池技术领域,尤其涉及一种基于灰狼群优化LSTM网络的锂离子电池剩余寿命预测方法。

背景技术

锂离子电池剩余寿命是用来描述当循环使用的锂离子电池容量达到确定阈值不能继续工作时所对应的充放电循环周期次数。目前,锂离子电池寿命的预测方法大致分可以为两类:基于经验的预测方法和基于性能的预测方法。基于经验的方法主要是利用电池历史数据对其寿命进行估计,也可称为基本统计规律法,主要包括循环周期数法、安时法与加权安时法和面向事件的老化累积方法等三种方法。这三种方法只能对锂离子电池剩余寿命给出粗略估计,它们是在对锂离子电池监测数据统计的基础上进行的,只能适用于特殊的条件场合,虽然具有较快的计算速度,但是无法对电池内部的物理和化学的变化过程给出精确的描述,具有较差的适应性,无法适应复杂条件下的预测问题。

针对基于经验的预测方法的不足,基于性能的预测方法具有较强的适用性,它在电池寿命预测的过程中可以使用各种不同的性能模型,同时考虑锂离子电池内部的衰退过程和外力因素的影响。目前,基于性能的预测方法主要包括基于模型的预测方法、基于数据驱动的预测方法和基于融合模型的三种预测方法。

锂离子电池容量数据能够有效反映锂离子电池的剩余寿命情况。随着充放电次数的增加,锂离子电池容量逐渐减小,当实际电池容量小于额定电池容量的70%时,认为锂离子电池已无法正常使用,此时需考虑更换锂离子电池。如何利用早期锂离子电池容量数据,实现锂离子电池的剩余寿命预测,合理规划工业生产中的锂离子电池储量,对满足实际工业生产效益最大化具有重要意思。

长短期记忆网络(Long Short-Term Memory,即LSTM)针对循环神经网络的缺陷进行改进,一是在隐含层的内部添加了遗忘门、输入门和输出门,二是增加一条信息流,用来代表长期记忆,这两项改进使长短期记忆网络具有较好的长短期记忆能力,能够更好的解决时间序列预测问题。

发明内容

本发明要解决的技术问题是针对上述现有技术的不足,提供一种基于灰狼群优化LSTM网络的锂离子电池剩余寿命预测方法,实现对锂离子电池剩余寿命的直接预测。

为解决上述技术问题,本发明所采取的技术方案是:基于灰狼群优化LSTM网络的锂离子电池剩余寿命预测方法,包括以下步骤:

步骤1、获取锂离子电池的监测数据,并从中提取出锂离子电池容量数据,将这些电池容量数据划分成训练数据集、验证数据集和测试数据集,同时对这些电池容量数据进行归一化处理;

步骤2、确定长短期记忆网结构,构造基于LSTM的锂离子电池剩余寿命预测模型;

所述锂离子电池剩余寿命预测模型包括输入层、LSTM层、全连接层、Droupout层、全连接层、回归层以及输出层;第一层全连接层中每个神经元与其前一层LSTM层进行全连接,起到特征融合的作用;将Droupout层添加到第一层全连接层之上,起到防止过拟合和提高泛化能力的作用;Droupout层在每次参数训练过程中,以概率p舍弃部分神经元,剩余神经元以1-p的概率予以率保留;同时在Droupout层上添加神经元个数为1的全连接层以及回归层,确保输出结果为连续的预测值;

步骤3:利用灰狼群算法优化锂离子电池剩余寿命直接预测模型中的关键参数,得到基于灰狼群优化LSTM网络的直接预测模型;

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于东北大学,未经东北大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201910238129.9/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top