[发明专利]色彩校正系统和方法有效

专利信息
申请号: 201910240349.5 申请日: 2015-05-15
公开(公告)号: CN109963133B 公开(公告)日: 2021-07-30
发明(设计)人: 陈玮;曹子晟 申请(专利权)人: 深圳市大疆创新科技有限公司
主分类号: H04N9/64 分类号: H04N9/64;H04N9/04;H04N5/232
代理公司: 中科专利商标代理有限责任公司 11021 代理人: 张成新
地址: 518057 广东省深圳市南山区高*** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 色彩 校正 系统 方法
【说明书】:

发明公开了一种用于针对色彩校正来标定数字成像装置的系统和方法。所述方法包括获得多个颜色参考中的每一个的输入颜色值和参考颜色值以及用于评价降噪的具有颜色噪声的噪声评价图像,所述输入颜色值和所述参考颜色值位于非线性色彩空间中。确定基于在所述非线性色彩空间中评价适应度函数而优化的多个色彩校正参数。所述非线性色彩空间可以是CIE L*a*b*色彩空间。所述适应度函数可以包括色彩校正误差和噪声放大度量以便降低色彩校正期间的噪声放大。

技术领域

所公开的实施方式总体涉及数字图像处理,并且更具体地涉及但不排他地涉及用于数字图像的色彩校正的系统和方法。

背景技术

由于数字成像装置获取色彩的方式不同于人眼感知色彩的方式,因此数字成像装置所获取的图像通常受益于色彩校正。然而,色彩校正过程可能容易引入和/或放大不同类型的噪声。这是本发明的实施方式旨在解决的总体领域。

发明内容

本文描述了可以针对色彩校正来标定数字成像装置的系统和方法。所述方法包括获得多个颜色参考中的每一个的输入颜色值和参考颜色值,以及用于评价降噪的具有颜色噪声的噪声评价图像,所述输入颜色值和参考颜色值位于非线性色彩空间中。确定基于在所述非线性色彩空间中评价适应度函数而优化的多个色彩校正参数。所述非线性色彩空间可以是CIE L*a*b*色彩空间。所述适应度函数可以包括色彩校正误差和噪声放大度量以便在色彩校正期间降低噪声放大。

根据本文的第一方面,公开了一种用于针对色彩校正来标定数字成像装置的方法,所述方法包括:获得多个颜色参考中的每一个的输入颜色值和参考颜色值以及用于评价降噪的具有颜色噪声的噪声评价图像,所述输入颜色值和参考颜色值位于非线性色彩空间中;以及确定基于在所述非线性色彩空间中评价适应度函数而优化的多个色彩校正参数。

在一些实施方式中,所述非线性色彩空间是CIE L*a*b*色彩空间。

在一些实施方式中,确定所述多个色彩校正参数包括基于所述输入颜色值和参考颜色值以及所述噪声评价图像来调整所述色彩校正参数。

在一些实施方式中,所述适应度函数包括色彩校正误差和噪声放大度量。

在一些实施方式中,调整所述多个色彩校正参数包括通过对所述输入颜色值进行色彩校正并且将经校正的输入颜色值与所述参考颜色值进行比较来确定所述色彩校正误差。

在一些实施方式中,调整所述多个色彩校正参数包括通过使用所述参数对所述噪声评价图像进行色彩校正并且将经校正的噪声评价图像与所述校正前噪声评价图像进行比较来确定所述噪声放大度量。

在一些实施方式中,确定所述噪声放大度量包括使用峰值信噪比(PSNR)来确定所述噪声放大度量。

在一些实施方式中,使用PSNR来确定所述噪声放大度量包括求出PSNR差,所述PSNR差为所述校正前噪声评价图像的PSNR与所述经校正噪声评价图像的PSNR之间的差。

在一些实施方式中,使用PSNR来确定所述噪声放大度量包括确定下采样PSNR差。

在一些实施方式中,确定下采样PSNR差包括:对所述校正前噪声评价图像进行下采样以获得下采样校正前噪声评价图像;对所述经校正噪声评价图像进行下采样以获得下采样经校正噪声评价图像;以及求出作为所述下采样校正前噪声评价图像的PSNR与所述下采样经校正噪声评价图像的PSNR之间的差的下采样PSNR差。

在一些实施方式中,确定所述噪声放大度量包括确定所述PSNR差和至少一个下采样PSNR差的加权平均值。

在一些实施方式中,使用PSNR来确定所述噪声放大度量包括确定多个连续下采样PSNR差以及将所述噪声放大度量确定为所述PSNR差和所述多个连续下采样PSNR差的加权平均值。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于深圳市大疆创新科技有限公司,未经深圳市大疆创新科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201910240349.5/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top