[发明专利]基于频域分解及人工智能算法的短期负荷预测方法在审
申请号: | 201910243384.2 | 申请日: | 2019-03-28 |
公开(公告)号: | CN109934418A | 公开(公告)日: | 2019-06-25 |
发明(设计)人: | 张倩;丁津津;马金辉;马愿;谢毓广;李顺;李智;赵晓春;叶海峰;黄少雄;王璨 | 申请(专利权)人: | 安徽大学 |
主分类号: | G06Q10/04 | 分类号: | G06Q10/04;G06Q10/06;G06Q50/06 |
代理公司: | 杭州浙科专利事务所(普通合伙) 33213 | 代理人: | 吴秉中 |
地址: | 230601 安徽省*** | 国省代码: | 安徽;34 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 短期负荷预测 频域分解 预测 人工智能算法 神经网络算法 低频分量 高频分量 随机森林 预测结果 周期分量 分解 算法 神经网络 时间序列 原始负荷 | ||
本发明针对现有的短期负荷预测方法都存在预测方法较为单一,预测精度不高的问题,提供一种基于频域分解及人工智能算法的短期负荷预测方法。该方法,包括:用频域分解算法对原始负荷数据的负荷时间序列进行分解,获得日周期分量、周周期分量、低频分量和高频分量;采用神经网络算法对日周期和周周期进行预测;采用随机森林算法对低频分量进行预测;对高频分量进行二次分解,对分解后的低频部分采用神经网络算法进行预测。本发明所提的基于频域分解的短期负荷预测模型,预测结果与Elman神经网络、随机森林预测结果相比具有更高的预测精度。
技术领域
本发明涉及电力系统预测相关技术领域,具体地说,涉及一种基于频域分解及人工智能算法的短期负荷预测方法。
背景技术
负荷预测可根据预测期限分为长期预测(年度预测)、中期预测(月度预测)、短期预测(日度预测)和超短期预测(时分预测)。短期负荷预测对如何安排调度计划、联络线交换功率、机组优化组合等有着重要意义。电力负荷在短期内具有高度波动性和随机性,因此短期负荷预测更加困难。随着我国节能减排政策的逐步实施,提高负荷预测的精度已成为一个日益重要的研究课题。
近年来,出现了各种各样的负荷预测方法,如基于统计分析理论的时间序列法;根据逻辑规则进行推理的神经网络法;建立在统计学习理论和结构风险最小原理基础上的支持向量机法;采用变换分位数回归和高斯核函数的组合预测方法;随机森林作为比较新的机器学习算法,广泛应用于负荷预测研究中。
其中一个现有技术应用了Elman神经网络,该网络通过将承接层作为延迟算子添加到前馈网络的隐藏层,以实现记忆的目的并提高网络稳定性。另一现有技术提出随机森林法,该方法所需调节参数少,具有较强的泛化能力,且收敛速度快,预测精度高。
由于负荷的随机因素过多,非线性极强,传统方法的理论基础也有限。近年来,对负荷序列进行先分解再预测的方法成为研究热点。有现有技术提出了经验模态分解法,然后结合不同预测方法估算短期负荷。也有现有技术提出了一种基于小波-原子稀疏分解的超短期负荷预测模型,结合粒子群优化算法和正交匹配追踪算法,提高了原子稀疏分解能力,更有利于提升负荷的预测精度。其他现有技术也公开了使用Akima插值法代替滑动平均值法来处理局域函数以改进局域均值分解(Local Mean Decomposition,LMD)算法,然后使用广义回归神经网络,预测每个分量的趋势,叠加各个分量得到负荷序列的总趋势。
但现有的短期负荷预测方法都存在预测方法较为单一,预测精度不高的问题,急需一种具有更高精度的短期负荷预测方法。
发明内容
本发明针对现有的短期负荷预测方法都存在预测方法较为单一,预测精度不高的问题,提供一种基于频域分解及人工智能算法的短期负荷预测方法。
本发明所需要解决的技术问题,可以通过以下技术方案来实现:
一种基于频域分解及人工智能算法的短期负荷预测方法,其特征在于,包括:
用频域分解算法对原始负荷数据的负荷时间序列进行分解,获得日周期分量、周周期分量、低频分量和高频分量;
采用神经网络算法对日周期和周周期进行预测;
采用随机森林算法对低频分量进行预测;
对高频分量进行二次分解,对分解后的低频部分采用神经网络算法进行预测。
本发明中,用频域分解算法对原始负荷数据的负荷时间序列进行分解,获得日周期分量、周周期分量、低频分量和高频分量,包括如下步骤:
1)采用傅里叶变换对原始负荷数据的负荷时间序列进行分解,得到了彼此正交的谐波信号;
2)利用负荷变化周期性的特性对步骤1)分解后的负荷时间序列进行重构;
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于安徽大学,未经安徽大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201910243384.2/2.html,转载请声明来源钻瓜专利网。
- 同类专利
- 专利分类
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理