[发明专利]一种基于多特征和尺度估计的PCB板标识跟踪方法有效

专利信息
申请号: 201910288751.0 申请日: 2019-04-11
公开(公告)号: CN110163090B 公开(公告)日: 2023-08-22
发明(设计)人: 许桢英;冷凯;包金叶;顾君兰;邹荣;王匀 申请(专利权)人: 江苏大学
主分类号: G06V10/22 分类号: G06V10/22;G06V20/52;G06V10/764;G06V10/77;G06V10/774;G06V10/80;G06V10/40
代理公司: 暂无信息 代理人: 暂无信息
地址: 212013 江*** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 特征 尺度 估计 pcb 标识 跟踪 方法
【权利要求书】:

1.一种基于多特征和尺度估计的PCB板标识跟踪方法,其特征在于,包括以下步骤:

初始化:读入第一帧中传送带上PCB板图像,同时获取PCB板标识位置;

构造分类器:利用循环矩阵构造PCB板标识样本,对PCB板标识训练样本加汉宁窗,提取训练样本的灰度特征图,因为HOG特征取自灰度特征图,在灰度图的基础上,设置阈值,对灰度图进行图像增强效果,提取HOG特征和CN特征,融合后的特征定义为x=[x1,x2,...,xc],c为特征维度,训练样本特征进行傅里叶变换,训练样本核空间矩阵进行傅里叶变换,通过傅里叶反变换求出权重系数α来构造的分类器函数f(z),z为样本;

更新PCB板标识位置:在下一帧中,对检测样本加汉宁窗后,提取待检测PCB板标识样本z的HOG特征和CN特征,对两个特征进行傅里叶变换,检测样本核空间矩阵傅里叶变化,通过其中为权重系数,为高斯核函数,对其做傅里叶反变换来计算它们的响应值f(z),并计算两特征的权重,通过加权方式并确定最终位置;

尺度估计:设计一个相关滤波器,建立PCB板标识尺度池,设PCB板标识为T,同样以si*T提取i个样本,si为尺度样本,并将这些样本变换为固定尺寸,然后代入尺度滤波器计算其响应,PCB板标识的尺度为其对应的输出响应最大,实现尺度估计;

更新分类器和尺度估计模型:得到PCB板标识的位置后,将更新分类器和尺度估计模型,然后再对下一帧进行检测;

所述构造分类器是利用循环矩阵把图像中的PCB板标识向上、向下分别移动不同的像素得到新的样本图像为I,大小为1280*720像素;首先对图像I加汉宁窗,得到图像I2,大小为214*74像素,提取训练样本的灰度特征图,紧接着提取HOG特征和CN特征,将特征融合,定义x=[x1,x2,...,xc],c为特征维度,训练样本特征进行傅里叶变换,训练样本核空间矩阵进行傅里叶变换为λ为正则化参数,对回归值y傅里叶变换通过计算对进行傅里叶反变换求出权重系数α,则构造的分类器函数其中f(z)为响应值,z为训练样本,w为权重,k(z,xi)为核函数,xi代表特征向量,α为权重系数。

2.根据权利要求1所述的一种基于多特征和尺度估计的PCB板标识跟踪方法,其特征在于,所述初始化是采集传送带上PCB板图像,使用matlab读入图像,并获取PCB板标识的位置。

3.根据权利要求1所述的一种基于多特征和尺度估计的PCB板标识跟踪方法,其特征在于,更新PCB板标识位置中,对检测样本加汉宁窗后,提取待检测样本z的HOG特征和CN特征,并进行傅里叶变换,检测样本核空间矩阵傅里叶变化,通过为权重系数,为高斯核函数,对其做傅里叶反变换来计算HOG特征的响应值f(zh)和CN特征的响应值f(zc),其中,zh为待检测HOG特征样本,zc为待检测CN特征样本,计算权重并确定最终位置p最终位置=θ*pc+(1-θ)*ph,ph为HOG特征的位置,pc为CN特征的位置。

4.根据权利要求1所述的一种基于多特征和尺度估计的PCB板标识跟踪方法,其特征在于,尺度估计过程中,PCB板标识的尺度为其对应的输出响应最大,获得最大响应时的尺度系数为:为检测样本的响应值,F-1为傅里叶逆变换。

5.根据权利要求1所述的一种基于多特征和尺度估计的PCB板标识跟踪方法,其特征在于,更新分类器中,分类器更新系数为:更新目标模板为:n为图像序列号,第n帧的参数αn为第n-1帧的参数αn-1与当前帧训练得到的参数的线性加权,β为更新系数;更新尺度估计模型的带宽更新参数为:σw=σw'*s和σh=σh'*s,σw'为上一帧的尺度宽度系数,σh'为上一帧的尺度高度系数,σw为本帧的尺度宽度系数,σh为本帧的尺度高度系数,s为尺度变化因子。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于江苏大学,未经江苏大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201910288751.0/1.html,转载请声明来源钻瓜专利网。

同类专利
专利分类
×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top