[发明专利]一种基于深度特征融合网络的心动过速心电图的筛查方法有效
申请号: | 201910297654.8 | 申请日: | 2019-04-15 |
公开(公告)号: | CN110327034B | 公开(公告)日: | 2022-07-15 |
发明(设计)人: | 郝鹏翼;高翔;叶涛涛;童清霞;吴福理;吴健 | 申请(专利权)人: | 浙江工业大学 |
主分类号: | A61B5/318 | 分类号: | A61B5/318;A61B5/319;A61B5/349;A61B5/353;A61B5/355;A61B5/366 |
代理公司: | 杭州斯可睿专利事务所有限公司 33241 | 代理人: | 王利强 |
地址: | 310014 浙江省*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 深度 特征 融合 网络 心动过速 心电图 方法 | ||
一种基于深度特征融合网络的心动过速心电图的筛查方法,包括以下步骤:步骤一,数据处理,对原始心电图图像进行预处理,除去心电图中基线漂移和电力线干扰;步骤二,数据重构,将预处理过后的心电图图像中的十二导联分别进行框选分离,重新组织构建数据集;步骤三,模型构建,构建深度神经网络;步骤四,模型训练,输入处理以及重构后的数据到网络中进行参数调整,训练模型;步骤五,模型输出,利用训练过后的模型筛查心动过速心电图。本发明可以根据心电图筛查是否为心动过速。
技术领域
本发明涉及医学图像分析领域及机器学习领域,特别涉及一种应用于十二导联心电图中心动过速的筛查,属于基于深度学习的医学图像分析领域。
背景技术
心动过速指的是每分钟心率超过100次,这是一种在临床上比较常见的疾病。在医学上可以分为生理性和病理性两种。生理性心动过速一般和体力活动、饮酒等有关,这往往不需要进行治疗。病理性心动过速一般由贫血、心机病等引起,一旦超过140次每分钟,就会产生危害甚至猝死,这就需要尽早进行治疗,所以如何根据心电图准确地筛查出心动过速非常重要。
常规心电图检查时,通常会安放4个肢体导联电极和V1-V6 6个胸前导联电极,记录常规12导联心电图,医生则可依据这12导联来进行诊断,此时医生需要花费大量时间和精力来对每个导联进行诊断,最后才能给出一个结果,而且由于影像中干扰噪声存在,容易造成一定几率的误诊,所以计算机辅助诊断是近年来应用于心电图识别心动过速中的一个重要手段,而传统的模型效率低,代价高,且往往会遗漏信息而造成准确率不高。而近年来深度学习进入人们视线,渐渐代替了很多传统的模型,成为了医学人工智能领域的一个最为重要的方法。所以如何利用深度学习,构建一个适用于判别心电图中心动过速的模型,意义重大。
发明内容
为了克服现有心电图识别心动过速方法的效率低。代价高、准确性较低的不足,为了准确筛查心动过速心电图,本发明提出了一种基于深度特征融合网络的心动过速心电图的筛查方法,实现了对心动过速的自动筛查。
本发明所采用的技术方案:
一种基于深度特征融合网络的心动过速心电图的筛查方法,包含以下步骤:
步骤一,数据处理,对原始心电图图像进行预处理,除去心电图中基线漂移和电力线干扰;
步骤二,数据重构,将预处理过后的心电图图像中的十二导联分别进行框选分离,重新组织构建数据集;
步骤三,模型构建,构建深度神经网络,过程如下:
步骤3.1将网络分为12个分支,即branch1—branch12,分别可接收128*128*3的图像输入;
步骤3.2构建12个分支的网络:每个分支单独通过一个Dense block以及Transition layer后,再将图像通过一个Dense block和Transition layer;
步骤3.3将12个分支网络中提取出来的特征(32*32*32)进行深度上的合并,构成一个32*32*384的特征图;
步骤3.4将合并后的特征图先经过3*3的卷积操作,随后进行Relu激活函数,再经过一个2*2的最大池化层;
步骤3.5重复3.4操作,获得8*8*64的特征图;
步骤3.6将上述操作得到的结果经过一个全连接层后再经过batchnormalization操作;
步骤3.7重复3.6操作两次后,经过一个Softmax激活函数,最后得到二分类的结果,所述二分类是心动过速心电图或非心动过速心电图;
步骤四,模型训练,输入重构后的数据到网络中进行参数调整,训练模型。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江工业大学,未经浙江工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201910297654.8/2.html,转载请声明来源钻瓜专利网。