[发明专利]基于HIN挖掘动态多模式的医保异常检测方法及系统有效
申请号: | 201910324775.7 | 申请日: | 2019-04-22 |
公开(公告)号: | CN110322356B | 公开(公告)日: | 2020-08-07 |
发明(设计)人: | 史玉良;赵备;张坤;王新军 | 申请(专利权)人: | 山东大学 |
主分类号: | G06Q40/08 | 分类号: | G06Q40/08;G06F16/2458;G06F16/28 |
代理公司: | 济南圣达知识产权代理有限公司 37221 | 代理人: | 李圣梅 |
地址: | 250101 山东*** | 国省代码: | 山东;37 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 hin 挖掘 动态 模式 医保 异常 检测 方法 系统 | ||
本公开提出了基于HIN挖掘动态多模式的医保异常检测方法及系统,获取历史医保记录实例数据;提取医保诈骗相关的强关联属性,构成医保特征数据集;构建医保异构信息网络;基于构建医保异构信息网络,获取异构信息网络及其元图;基于医保异构信息网络的元图,随机选择一初始节点,以关联节点和边的增量式添加,生成单层模式和复合模式;基于模式是NP2的单层模式,对同一实例集合中的不同实例采用横向比较识别离群点,对同一实例的不同时间段的就医记录,采用纵向比较识别离群点,从而完成医保记录异常检测。将同一时间段内多个时间间隔出现过的医保记录中各节点的关联保留,即降低了异常识别的复杂度,又保证可更加全面完善地识别异常医保记录。
技术领域
本公开涉及医保信息处理技术领域,特别是涉及一种基于HIN挖掘动态多模式的医保异常检测方法及系统。
背景技术
随着医疗保险的发展,其覆盖范围越来越大,相关业务也越来越复杂,随之而来的医保欺诈问题也日趋严重,医保欺诈手段日趋隐蔽化、专业化和组织化,导致每年都有大量医保资金被骗取。同时,随着医保信息化的发展,在医保业务过程中积累了大量的医保相关数据,从中检测潜在异常数据是治理医保欺诈现象的重要手段。
发明人在研究中发现,离群点检测是医保异常检测的通用的方法,通过先验知识假定关注的模式和指标,基于固定的模式和指标通过离群点检测挖掘异常。
但随着医保制度的发展,医保欺诈行为复杂多变且具有隐蔽性,更为值得关注的是,新的欺诈模式正不断出现,针对固定模式的异常检测算法对新的欺诈模式缺乏免疫力,故基于固定模式发现欺诈行为的方法难以满足现在的需求,且考虑到医疗体制的发展,医保属性数据不断发生改变从而导致属性关联的变化,故需从整体医保数据和个体医保数据两个维度对异常数据进行检测,从而不断动态自适应优化异常检测模型。
发明内容
本说明书实施方式的目的是提供一种基于HIN挖掘动态多模式的医保异常检测方法,通过历史医保记录实例构建异构信息网络,并以增量节点生成多类型模式,并以横向和纵向比较识别离群点,实现动态多样化模式识别医保诈骗行为。
本说明书实施方式提供基于HIN挖掘动态多模式的医保异常检测方法,通过以下技术方案实现:
包括:
获取历史医保记录实例数据并对数据进行预处理;
对预处理后的数据,分析各类医保记录实例数据的特征属性与医保诈骗的关联性,从而提取医保诈骗相关的强关联属性,构成医保特征数据集;
基于历史医保记录实例数据、医保特征数据集,及业务场景中实例与特征的关联,构建医保异构信息网络,从而实现业务实例到逻辑关联的元图映射;
基于构建医保异构信息网络,获取异构信息网络及其元图;
基于医保异构信息网络的元图,随机选择一初始节点,以关联节点和边的增量式添加,生成单层模式和复合模式;
基于模式是NP2的单层模式,对同一实例集合中的不同实例采用横向比较识别离群点,对同一实例的不同时间段的就医记录,采用纵向比较识别离群点,从而完成医保记录异常检测。
本说明书实施方式提供基于HIN挖掘动态多模式的医保异常检测系统,通过以下技术方案实现:
包括:
数据获取单元,被配置为:获取历史医保记录实例数据并对数据进行预处理;
医保特征数据集构建单元,被配置为:对预处理后的数据,分析各类医保记录实例数据的特征属性与医保诈骗的关联性,从而提取医保诈骗相关的强关联属性,构成医保特征数据集;
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于山东大学,未经山东大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201910324775.7/2.html,转载请声明来源钻瓜专利网。