[发明专利]一种基于上下文验证的地震行业网混合入侵信息识别方法有效
申请号: | 201910349049.0 | 申请日: | 2019-04-28 |
公开(公告)号: | CN110266636B | 公开(公告)日: | 2020-05-26 |
发明(设计)人: | 彭懋磊;吴昊;吕筱 | 申请(专利权)人: | 中国地震局地震研究所 |
主分类号: | H04L29/06 | 分类号: | H04L29/06;H04L12/24;H04L29/08 |
代理公司: | 湖北武汉永嘉专利代理有限公司 42102 | 代理人: | 钟锋 |
地址: | 430071 湖*** | 国省代码: | 湖北;42 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 上下文 验证 地震 行业 混合 入侵 信息 识别 方法 | ||
本发明提供了一种基于上下文验证的地震行业网混合入侵信息识别方法,针对现有方法存在的信息识别速度慢、误检率高、漏检率高等问题,通过对网络混合信号进行去噪处理,验证得到的网络混合信号的上下文并识别网络混合入侵信息,实现快速准确地识别地震行业网络混合入侵信息的功能,具有识别速度快、检测准确率高、误检率低、漏检率低的特点。
技术领域
本发明属于网络混合入侵信息识别技术领域,具体涉及一种基于上下文验证的地震行业网混合入侵信息识别方法。
背景技术
近年来,计算机网络技术飞速发展,网络信息的安全问题开始受到人们的关注,在网络混合模式下,网络信息更容易遭受到病毒的入侵;新型混合网络病毒的入侵和传播检测困难,目前采用的网络混合入侵信息识别算法,无法有效识别出新型混合网络病毒,如何建立高效的网络混合入侵信息识别方法,是当前研究的重点问题。地震前兆是与地震孕育和发生相关联的异常现象,准确发现地震异常现象和提前识别地震异常现象可以将地震的灾害降到最低。为了避免由于网络混合入侵造成的地震危害发现延迟、失误等问题,需要研究出一种地震行业网络混合入侵信息的快速识别方法。
封化民等在《基于SMOTE和GBDT的网络入侵检测方法研究》中提出一种基于SMOTE和GBDT的网络混合入侵信息识别方法,该方法在处理网络混合信息时,利用SMOTE技术提高少数类别的样本数量,并对多数类别的样本进行降采样处理,在数据集上训练GBDT分类器,实现对地震行业网络混合入侵信息的识别;桑园在《基于高阶累积量配准的网络异常流量识别算法》中提出一种基于高阶累积量配准的网络混合入侵信息识别方法,该方法需要创建网络异常信号统计模型,根据创建的模型对高阶累积量检测原理进行分析,采用自适应陷波器级联的方式干扰抑制网络混合信号,利用高阶累积量配准的手段实现对地震行业网络混合入侵信息的识别;牛国庆等在《基于神经网络的数模混合信号调制识别算法》中提出一种基于神经网络的网络混合入侵信息识别方法,该方法通过简化识别特征参数的方式降低参数对噪声干扰的敏感程度,将最佳隐含层节点数量与判决树相结合,实现对地震行业网络混合入侵信息的识别。但上述方法均存在网络混合入侵信息识别速度慢、误检率高、漏检率高等问题。
发明内容
本发明要解决的技术问题是:提供一种基于上下文验证的地震行业网混合入侵信息识别方法,用于快速、准确地识别网络混合入侵信息。
本发明为解决上述技术问题所采取的技术方案为:一种基于上下文验证的地震行业网混合入侵信息识别方法,包括以下步骤:
S1:对从地震行业网边际路由器以及流控服务器获取的网络混合信号进行去噪处理;
S2:验证步骤S1得到的网络混合信号的上下文并识别网络混合入侵信息,包括步骤S21、S22、S23、S24:
S21:将去噪后的网络混合信号作为入侵信息识别的样本,通过卡方检验得到网络混合信号的属性的卡方检验值;
S22:计算网络混合信号的属性的卡方检验值的总检测结果;
S23:根据总检测结果的大小判断网络混合信号的属性的卡方检验值的大小,初步定位网络混合入侵信息;
S24:通过朴素贝叶斯分类模型对初步定位的网络混合入侵信息进行快速识别。
按上述方案,所述的步骤S1中,具体步骤为:
S11:对从地震行业网边际路由器以及流控服务器获取的网络混合信号进行离散采样处理,得到离散信号;
S12:对离散信号进行小波变换,得到小波系数;
S13:比较小波系数与临界阈值的大小,若小波系数小于临界阈值则去除这部分小波系数;若小波系数大于等于临界阈值则保留这部分小波系数并利用递归的小波系数对小波进行重构,实现对网络混合信号的去噪处理。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国地震局地震研究所,未经中国地震局地震研究所许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201910349049.0/2.html,转载请声明来源钻瓜专利网。