[发明专利]一种大脑功能网络关键节点搜索方法在审

专利信息
申请号: 201910383332.5 申请日: 2019-05-08
公开(公告)号: CN109994204A 公开(公告)日: 2019-07-09
发明(设计)人: 焦竹青;季一新;焦庭轩;邹凌;李文杰 申请(专利权)人: 常州大学
主分类号: G16H50/20 分类号: G16H50/20;G06K9/62;A61B5/00;A61B5/055
代理公司: 南京正联知识产权代理有限公司 32243 代理人: 李寰
地址: 213164 江苏省*** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 大脑功能 关键节点 时间序列 后验分布 列向量 搜索 功能磁共振成像 预处理 矩阵 贝叶斯公式 随时间变化 网络连通性 长度固定 分段处理 格式转换 矩阵转化 似然信息 先验分布 线性处理 线性模型 网络 滑窗法 静息态 脑疾病 脑结构 脑网络 时间子 多层 构建 向量 子段 去除 稀疏 噪音 采集 诊断 应用 研究
【说明书】:

发明公开了一种大脑功能网络关键节点搜索方法,包括以下步骤:对采集的静息态功能磁共振成像进行格式转换和预处理并提取时间序列;将时间序列进行分段处理并对各段进行线性处理以去除噪音;利用滑窗法将时间序列划分为长度固定的重叠子段,计算各时间子段间的相关系数,构建出随时间变化的多层大脑功能网络;将脑网络依据线性模型将每个矩阵转化为列向量形式;根据每一组列向量的先验分布和结构似然信息用贝叶斯公式求出每一组的后验分布,计算出后验分布的均值,以均值代入公式算出组向量,继而得出稀疏后的矩阵。本发明有助于精确定位对网络连通性贡献较大的关键节点,在脑结构研究和脑疾病诊断等领域具有重要的应用价值。

技术领域

本发明属于生物医学信息处理技术领域,具体地说,是一种大脑功能网络关键节点搜索方法,该方法基于组稀疏贝叶斯模型。

背景技术

人类大脑是自然界存在的一种极具复杂的系统,各类神经元细胞通过突触连接在一起,形成了一个非常复杂的大脑结构网络,它是大脑进行各种生理和认知活动的结构基础。大脑在进行主动或由于外界刺激引起的被动活动过程中,各神经元或神经动态过程延伸为一个复杂的大脑功能网络,它是大脑神经活动变化的直观描述。可以看到,脑网络中的功能连接与结构连接密切相关,功能连接受到结构连接的限制,但也能通过结构连接来预测网络的功能连接。

目前人们利用静息态功能磁共振成像技术对大脑进行研究,与脑电图相比,功能磁共振数据拥有更好的空间分辨率,其空间分辨率可以达到毫米水平。作为一种非损伤性脑成像技术,磁共振成像在脑功能研究中发挥了不可替代的作用。静息态功能磁共振方法以其简单的实验设计,较高的信噪比,简单的数据处理流程而被广泛采用。

在自然界中,几乎每一个系统总有一个或者多个主要素占有非常重要的位置,因此由复杂网络抽象出来的复杂网络中的每个节点的重要程度是不同的,在各种复杂网络中,用定量分析的方法寻找复杂网络中的关键节点是复杂网络研究的一个基本问题。刻画节点重要程度的一个指标就是节点中心化指标,用于定量地表示一些节点比其他节点更重要的程度,该指标用于确定网络中个体所处位置与其在群体中的影响或号召力之间的关系。同样,在脑网络中找到关键的节点对于脑网络拓扑结构的研究有非常重要的价值。

目前已有许多关于脑网络的研究,将其看成一种复杂网络,具有小世界网络和无标度网络的特性,但绝大部分研究都集中于将大脑看成一个整体,研究的是整个大脑功能网络的特性,但脑网络是由一些功能子网络构成的,于是根据功能磁共振数据经过稀疏化来提取每个脑区的特征,为以后对特征研究进行后续操作做铺垫。

稀疏贝叶斯方法是一种通用的贝叶斯方法,通过定义先验分布的方法达到稀疏,相比于其他机器学习的稀疏方法如:LASSO、SPGL1等方法,稀疏贝叶斯的最大优势是它能得到最优解。为了不失一般性,利用线性模型去学习贝叶斯方法并用于搜索大脑功能网络关键节点,是一种实用的技术方法。

发明内容

本发明针对现有技术存在的不足和实际应用的需要,披露了一种大脑功能网络关键节点搜索方法,所要解决的问题是:

提供一种基于组稀疏贝叶斯模型的大脑功能网络关键节点搜索方法,利用组贝叶斯稀疏模型将多层大脑功能网络的每一层网络进行稀疏并搜索出关键节点。关键节点能有效地体现出网络拓扑属性的重要性,在脑结构研究和脑疾病诊断等领域具有重要的应用价值。

为了达到上述目的,本发明采取以下技术方案:

一种大脑功能网络关键节点搜索方法,结合了组稀疏贝叶斯模型,包括以下步骤:

对采集的大脑功能磁共振成像进行格式转换和预处理,包括:时间校正、空间配准、标准化、滤波;选定一种标准化大脑分区模板将大脑划分为若干个脑区,每个脑区分别抽象为大脑功能网络中的一个节点;

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于常州大学,未经常州大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201910383332.5/2.html,转载请声明来源钻瓜专利网。

同类专利
专利分类
×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top