[发明专利]一种融合听觉感知特征和视觉特征的中国民歌地域分类方法有效

专利信息
申请号: 201910394433.2 申请日: 2019-05-13
公开(公告)号: CN110222227B 公开(公告)日: 2021-03-23
发明(设计)人: 杨新宇;罗晶;王银瑞;董怡卓;魏洁;夏小景;张亦弛;吉姝蕾;崔宇涵 申请(专利权)人: 西安交通大学
主分类号: G06F16/683 分类号: G06F16/683;G06K9/46;G06K9/62
代理公司: 西安通大专利代理有限责任公司 61200 代理人: 徐文权
地址: 710049 *** 国省代码: 陕西;61
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 融合 听觉 感知 特征 视觉 中国民歌 地域 分类 方法
【权利要求书】:

1.一种融合听觉感知特征和视觉特征的中国民歌地域分类方法,其特征在于,首先,对原始音频信号按帧提取听觉感知特征并进行时序相关性建模;其次,将原始音频信号的整体转化为彩色语谱图提取视觉特征;最后,将提取到的两部分特征进行决策级融合得到最终的分类结果;具体包括以下步骤:

1)听觉感知特征的提取:包括按帧提取音频特征,帧特征时序相关性建模,新的特征向量集合,归一化处理,具体包括以下步骤:

1-1)按帧提取音频特征:针对原始音频信号按帧提取梅尔频率倒谱系数、谱质心及Chroma特征作为听觉感知特征;

1-2)帧特征时序相关性建模:采用连续隐马尔科夫模型为每类民歌建立模型,连续隐马尔科夫模型简称CHMM模型;

1-3)新的特征向量集合:计算每首民歌对应于所有CHMM模型的输出概率,并将这些输出概率组合成新的特征向量集合;

1-4)归一化处理:对得到的新特征向量进行归一化处理,作为最终用于分类的听觉感知特征向量集合;

2)视觉特征的提取:视觉特征的提取过程,包括视觉图像的获取,视觉纹理特征的提取,以及视觉特征的降维处理,具体包括以下步骤:

2-1)视觉图像的获取:将每首民歌的音频信号的整体转化为彩色语谱图,并将每幅彩色语谱图转化为RGB三个颜色通道的灰度图像;

2-2)视觉纹理特征的提取:分别对每个颜色通道的灰度图像提取均匀二值模式和对比度特征,同时考虑对不同颜色通道之间的uniform LBP特征相关性进行计算,考虑Contrast特征提取时算子取值离散化问题;

2-3)视觉特征的降维处理:采用概率分析方法来获得不同地域民歌各种颜色通道内uniform LBP特征中差异比较大的模式,然后只保留这些模式,从而达到降维的目的;

3)地域分类器融合:分别将提取到的听觉感知特征、视觉特征输入到各自的支持向量机分类器,对得到的SVM分类器分数向量进行融合作为最终的分类结果。

2.根据权利要求1所述的一种融合听觉感知特征和视觉特征的中国民歌地域分类方法,其特征在于,步骤1-2)具体操作为:将每首民歌提取的听觉感知特征作为观测向量,采用改进的Baum-Welch算法训练每个地域民歌的CHMM模型;具体步骤如下:

1)CHMM的初值选择

CHMM的参数训练过程,需要输入初始的模型参数;其中HMM初始状态概率向量初值π0与初始状态转移矩阵A0对模型的建立影响不大,随机给出;而HMM状态数W与GMM模型个数P,则尝试采用不同组合来确定,以寻找最优的CHMM模型;GMM的初始参数选择则采取K均值分段算法来设置;

2)CHMM参数训练过程

CHMM参数训练过程分为以下两步:

E-step:给定观察向量序列递归计算出第t帧处于状态Sj中的前向概率αt(Sj)与后向概率βt(Sj),并由二者计算出第t帧处于状态Si且第t+1帧处于状态Sj的概率如式(1),以及第t帧处于状态Sj中第m个高斯模型的概率如式(2):

M-step:根据γt(Sj)重新估计CHMM的参数:计算GMM各模型平均值向量μjm、协方差矩阵∑jm,权重cjm;状态转移概率aij,初始状态概率向量π;各参数表达式如下:

3.根据权利要求2所述的一种融合听觉感知特征和视觉特征的中国民歌地域分类方法,其特征在于,步骤1-3)具体操作为:将每首民歌的听觉感知特征作为观察向量采用Viterbi算法求出其对应于每个CHMM模型的输出概率,然后将其串接成一维向量其中表示训练集中第m类地域中第j首歌在第i个地域民歌CHMM模型下的输出概率,从而将第m类民歌中所有感知特征向量集合转化为新的特征向量集合

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安交通大学,未经西安交通大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201910394433.2/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top