[发明专利]基于谱峭度和神经网络的滚动轴承故障分类方法及系统有效

专利信息
申请号: 201910394821.0 申请日: 2019-05-13
公开(公告)号: CN110017991B 公开(公告)日: 2020-03-31
发明(设计)人: 常发亮;蒋沁宇 申请(专利权)人: 山东大学
主分类号: G01M13/045 分类号: G01M13/045
代理公司: 济南圣达知识产权代理有限公司 37221 代理人: 张庆骞
地址: 250061 山东*** 国省代码: 山东;37
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 谱峭度 神经网络 滚动轴承 故障 分类 方法 系统
【说明书】:

本公开提供了一种基于谱峭度和神经网络的滚动轴承故障分类方法及系统。其中,基于谱峭度和神经网络的滚动轴承故障分类方法,包括:基于谱峭度对轴承故障信号进行滤波处理;提取滤波后轴承故障信号的梅尔倒谱系数特征和差分特征,得到梅尔倒谱系数特征集和差分特征集;分别随机从梅尔倒谱系数特征集和差分特征集中抽取若干个特征,按照抽取顺序依次排列,形成由预设大小二维矩阵表示的梅尔倒谱系数特征图和差分特征图,形成训练集;将训练集中的梅尔倒谱系数特征图和差分特征图输入至双通道卷积神经网络的对应通道并进行训练,得到滚动轴承故障分类模型;利用滚动轴承故障分类模型对实时接收到的轴承故障信号进行故障分类。

技术领域

本公开属于滚动轴承故障分类领域,尤其涉及一种基于谱峭度和神经网络的滚动轴承故障分类方法及系统。

背景技术

本部分的陈述仅仅是提供了与本公开相关的背景技术信息,不必然构成在先技术。

轴承运行中产生的振声信号包含着丰富的轴承状态信息,通过信号处理技术对振声信号进行处理,最终通过故障诊断方法对振声信号进行分析可以完成对设备状态的检测。目前的轴承故障诊断和分类方法大都集中在对轴承振声信号分解、包络分析,如W.A.Smith等人在《Mechanical Systems and Signal Processing》2015年64-65卷中发表的综述论文《Rolling element bearing diagnostics using the Case Western ReserveUniversity data:A benchmark study》中总结了近些年在滚动轴承故障诊断中应用的信号处理、包络分析等技术,以及对CWRU轴承数据集中所有数据的整体评估。

发明人发现,在实际应用中,工厂内的噪声对采集的振声信号有较大干扰,传统的诊断和分类方法都无法在这种情况下得到较好的结果,同时传统的包络分析法无法分辨故障的严重程度,常用的故障分类方法在强噪声干扰下极易失效。因此,传统故障诊断方法存在对故障程度不敏感、抗噪能力不强以及鲁棒性不足的问题。

发明内容

为了解决上述问题,本公开的第一个方面提供一种基于谱峭度和神经网络的滚动轴承故障分类方法,其基于谱峭度和卷积神经网络对滚动轴承进行故障分类,有效解决了强噪声影响下轴承诊断中精度不高和故障程度无法识别的问题。

为了实现上述目的,本公开采用如下技术方案:

一种基于谱峭度和神经网络的滚动轴承故障分类方法,包括:

基于谱峭度对轴承故障信号进行滤波处理;

提取滤波后轴承故障信号的梅尔倒谱系数特征和差分特征,得到梅尔倒谱系数特征集和差分特征集;

分别随机从梅尔倒谱系数特征集和差分特征集中抽取若干个特征,按照抽取顺序依次排列,形成由预设大小二维矩阵表示的梅尔倒谱系数特征图和差分特征图,形成训练集;

将训练集中的梅尔倒谱系数特征图和差分特征图输入至双通道卷积神经网络的对应通道并进行训练,得到滚动轴承故障分类模型;

利用滚动轴承故障分类模型对实时接收到的轴承故障信号进行故障分类。

为了解决上述问题,本公开的第二个方面提供一种基于谱峭度和神经网络的滚动轴承故障分类系统,其基于谱峭度和卷积神经网络对滚动轴承进行故障分类,有效解决了强噪声影响下轴承诊断中精度不高和故障程度无法识别的问题。

为了实现上述目的,本公开采用如下技术方案:

一种基于谱峭度和神经网络的滚动轴承故障分类系统,包括:

谱峭度滤波模块,其用于基于谱峭度对轴承故障信号进行滤波处理;

特征提取模块,其用于提取滤波后轴承故障信号的梅尔倒谱系数特征和差分特征,得到梅尔倒谱系数特征集和差分特征集;

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于山东大学,未经山东大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201910394821.0/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top