[发明专利]缺失语义补全方法及装置有效

专利信息
申请号: 201910428203.3 申请日: 2019-05-21
公开(公告)号: CN111984766B 公开(公告)日: 2023-02-24
发明(设计)人: 曾毓珑;魏建生;王雅圣;邓利群;崔安颀 申请(专利权)人: 华为技术有限公司
主分类号: G06F16/332 分类号: G06F16/332;G06F16/35;G06F40/289;G06F40/30
代理公司: 广州三环专利商标代理有限公司 44202 代理人: 郝传鑫;熊永强
地址: 518129 广东*** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 缺失 语义 方法 装置
【说明书】:

发明公开了人工智能领域自然语言处理领域中的一种缺失语义补全方法,包括:获取提问语句及历史对话语句;获取提问语句中的待消解项的位置信息,根据历史对话语句和待消解项的位置信息对提问语句的待消解项进行消解,以得到消解后的提问语句;确定提问语句中是否有成分被省略,若提问语句中有成分被省略,则根据历史对话语句将省略的成分补全,以得到省略补全的提问语句;对消解后的提问语句和省略补全的提问语句进行融合,以得到融合后的提问语句;从消解后的提问语句、省略补全的提问语句和融合后的提问语句中确定目标补全提问语句。本发明的方法适用于各种缺失语义补全的应用场景,有利于提高补全提问语句中缺失语义的准确性及效率。

技术领域

本发明涉及人工智能领域,尤其涉及一种缺失语义补全方法及装置。

背景技术

人工智能(Artificial Intelligence,AI)是利用数字计算机或者数字计算机控制的机器模拟、延伸和扩展人的智能,感知环境、获取知识并使用知识获得最佳结果的理论、方法、技术及应用系统。换句话说,人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式作出反应的智能机器。人工智能也就是研究各种智能机器的设计原理与实现方法,使机器具有感知、推理与决策的功能。

随着人工智能技术的不断发展,让人机之间能够通过自然语言进行交互的自然语言人机交互系统变的越来越重要。人机之间能够通过自然语言进行交互,就需要系统能够识别出人类自然语言的具体含义。通常,系统通过采用对自然语言的句子进行关键信息提取来识别句子的具体含义。

自然语言对话中,指代和省略是常见的语言现象。在口语对话系统或交互式问答系统中,通过指代和省略,用户不用每次使用包含完整语义的句子,使得表达更加简洁和自然。但对于自然语言理解来说,指代和省略的使用会造成句子语法或语义成分的缺失,因此需要对指代和省略的内容进行恢复和补充。指代消解和省略恢复技术对于构建一个交互流畅自然的对话系统来说非常重要。

汉语语言表达的方式繁多,因此对于人机对话系统来说,指代的识别及消解和省略的识别以及恢复都存在较大的挑战。

发明内容

本发明实施例提供一种缺失语义补全的方法及装置,有利于提高提问语句缺失语义补全的准确性及效率。

第一方面,本发明实施例提供一种缺失语义补全的方法,包括:

获取历史对话语句及用户输入的提问语句;获取该提问语句中的待消解项的位置信息,并根据历史对话语句和待消解项的位置信息对提问语句的待消解项进行消解,以得到消解后的提问语句;确定提问语句中是否有成分被省略,若确定提问语句中有成分被省略,则根据历史对话语句将省略的成分补全,以得到省略补全的提问语句;对消解后的提问语句和省略补全的提问语句进行融合,以得到融合后的提问语句;从消解后的提问语句、省略补全的提问语句和融合后的提问语句中确定目标补全提问语句,目标补全提问语句为消解后的提问语句、省略补全的提问语句和融合后的提问语句中句子主干完整程度及句子中所有词汇构成一句话的概率均最高的提问语句。通过对提问语句进行指代消解和缺失的成分进行补全,提高了缺失语义补全的准确率和补全效果、该方法不仅适用于零代词的场景,而且适用于其他成分省略的场景。并且对消解后的提问语句和省略补全的提问语句进行融合,得到融合后的提问语句,并从消解后的提问语句、省略补全的提问语句和融合后的提问语句中获取最终补全的提问语句,避免了消解后的提问语句和省略补全的提问语句存在误差的问题。

在一个可行的实施例中,获取提问语句中的待消解项的位置信息,包括:

获取提问语句的词语编号序列和词性编号序列,其中,词语编号序列由提问语句中每个词的对应的编号组成,词性编号序列由提问语句中的每个词的词性对应的编号组成;将提问语句的词语编号序列和词性编号序列输入到第一序列标注模型中进行运算,以得到待消解项的位置信息。通过引入序列标注模型用于指代定位,提高了指代定位的准确率,排除了一些无需消解的代词。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华为技术有限公司,未经华为技术有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201910428203.3/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top