[发明专利]一种基于深度学习和数据关联的在线多目标跟踪方法有效

专利信息
申请号: 201910429444.X 申请日: 2019-05-22
公开(公告)号: CN110288627B 公开(公告)日: 2023-03-31
发明(设计)人: 陈小波;冀建宇;王彦钧;蔡英凤;王海;陈龙 申请(专利权)人: 江苏大学
主分类号: G06T7/20 分类号: G06T7/20
代理公司: 暂无信息 代理人: 暂无信息
地址: 212013 江*** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 深度 学习 数据 关联 在线 多目标 跟踪 方法
【权利要求书】:

1.一种基于深度学习和数据关联的在线多目标跟踪方法,其特征在于,所述方法包括如下步骤:

步骤1:输入视频当前帧的图像;

步骤2:应用目标检测器得到图像中所有检测响应的集合Dt={D1,D2,…,DM},t为当前帧号,Dj为第j个检测响应,表示为其中/为检测响应Dj的中心点坐标,为检测响应Dj的宽和高,M为检测响应总数;

步骤3:利用深度余弦度量学习模型从检测响应集合Dt中的所有检测响应提取外观特征向量,表示为{Z1,Z2,…,ZM},其中Zj∈Rp为检测响应Dj的外观特征;

步骤4:初始化目标状态,将目标状态分为4类:初始状态、跟踪状态、丢失状态和删除状态;如果t=1,即输入视频的第一帧,产生目标集合Tt={T1,T2,…,TN},N=M,目标Tj与检测响应Dj对应,并将目标Tj的状态置为初始状态,转到步骤1;否则,转到步骤5;

步骤5:应用卡尔曼滤波算法,预测目标集合Tt-1中的每个目标Ti在当前帧中的位置和尺度,表示为其中/为预测的中心点坐标,/为预测的宽和高;

步骤6:基于两阶段数据关联将目标与检测响应匹配关联,得到最优关联结果;

步骤7:根据步骤6中的最优关联结果更新目标的状态和特征;

步骤8:输入下一视频帧的图像,重复步骤2、3、4、5、6、7直到视频结束。

2.根据权利要求1所述的一种基于深度学习和数据关联的在线多目标跟踪方法,其特征在于,所述步骤6基于两阶段数据关联的目标状态与检测响应的匹配关联,包括:

(a)基于前一帧中所有目标的状态,将目标集合Tt-1={T1,T2,…,TN}划分为两类Ω1和Ω2,Ω1∪Ω2=Tt-1,Ω1由处于初始状态和跟踪状态的目标组成,Ω2由处于丢失状态的目标组成,N为目标总数;

(b)计算Ω1中的每个目标与Dt中的每个检测响应的匹配相似度,得到相似度矩阵A1;以-A1为关联代价矩阵,将Ω1中的目标与Dt中的检测响应进行关联,应用匈牙利算法求解最优关联;依据关联结果将Ω1与Dt进行划分:Dt=DA∪DB,其中/中的目标与DA中的检测响应成功关联,/为未关联的目标集合,DB为第一阶段未关联的检测响应集合;

(c)计算Ω2中的每个目标与DB中的每个检测响应的匹配相似度,得到相似度矩阵A2;以-A2为关联代价矩阵,将Ω2中的目标与DB中的检测响应进行关联,应用匈牙利算法求解最优关联;依据关联结果将Ω2与DB进行划分:其中/中的目标与/中的检测响应成功关联,/为未关联的目标集合,/为第二阶段未关联的检测响应集合。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于江苏大学,未经江苏大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201910429444.X/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top