[发明专利]一种基于深度学习的异步电动机故障监测与诊断方法有效
申请号: | 201910471732.1 | 申请日: | 2019-05-31 |
公开(公告)号: | CN110109015B | 公开(公告)日: | 2020-06-26 |
发明(设计)人: | 刘辉;董书勤;刘泽宇 | 申请(专利权)人: | 中南大学 |
主分类号: | G01R31/34 | 分类号: | G01R31/34;G06N3/04;G06N3/08 |
代理公司: | 长沙市融智专利事务所(普通合伙) 43114 | 代理人: | 龚燕妮 |
地址: | 410083 湖南*** | 国省代码: | 湖南;43 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 深度 学习 异步电动机 故障 监测 诊断 方法 | ||
本发明公开了一种基于深度学习的异步电动机故障监测与诊断方法,包括以下步骤:获取异步电动机在已知工况类型时的电力负荷时间序列,其时间跨度为Num1个电力负荷周期,且每个样本时刻的电力负荷数据包括电压、电流和功率三个维度的数据;以电压、电流和功率数据分别作为RGB图像中三个图层的像素点灰度值,将每个电力负荷周期的时间序列片段转化为1张RGB图像,每个电力负荷时间序列相应得到一组特征图像时间序列;以异步电动机的特征图像时间序列和相应的工况类型,训练深度神经网络,得到故障诊断模型,从而用于对待测异步电动机进行工况分类。本发明方法的故障诊断正确率高,在节省系统开发时间的同时,也降低了从业人员的门槛。
技术领域
本发明涉及电机故障诊断领域,具体是指一种基于深度学习的异步电动机故障监测与诊断方法。
背景技术
电动机是电能和机械能相互转化的纽带和桥梁,目前最广泛应用的电动机便是异步电动机,在科学研究以及日常的生产生活中地位十分重要。作为动力设备,异步电动机在工业生产中扮演着非常重要的角色,在设备运行过程中,异步电动机发生故障会威胁到生产活动的顺利进行,甚至发生巨大的经济损失以及人员的伤亡。因此对电动机的运行状态进行监控可以防患于未然,有效避免损失的扩大化。
统计表明,定子绕组故障、转子断条故障、错位、动态气隙偏心和轴承齿轮箱故障等五种故障类型占异步电动机故障的85%以上。现有的异步电动机故障诊断方法多通过对其定子电流、振动信号等进行频谱分析从中提取反应故障特征的分量,从而进行故障诊断。此种方法需要对电机系统建立精确的数学模型,步骤繁琐,且需人工寻找大量的特征量以保证识别的准确率。
发明内容
基于上述电动机故障诊断方法所存在的技术问题,本发明提供一种基于深度学习的异步电动机故障监测与诊断方法,在节省了线下故障诊断系统开发时间的同时,还具有更高的故障诊断正确率,也降低了故障诊断从业人员的门槛。
为实现上述技术目的,本发明采用如下技术方案:
一种基于深度学习的异步电动机故障监测与诊断方法,包括深度神经网络模型建立和实时运行状态监测两个过程;
所述深度神经网络建立过程包括以下步骤:
步骤S1,数据预处理;
步骤S1.1,获取原始数据;
获取异步电动机在已知工况类型时的电力负荷时间序列,所述电力负荷时间序列的时间跨度为Num1个电力负荷周期,每个电力负荷周期包括Num2个样本时刻,每个样本时刻的电力负荷数据包括电压、电流和功率三个维度的数据;
步骤S1.2,数据图像化;
以电压、电流和功率数据分别作为RGB图像中三个图层的像素点灰度值,将每个电力负荷周期的Num2个样本时刻的电压、电流和功率数据,对RGB图像三个图层的各像素点进行赋值,其中样本时刻的顺序与像素点的行列顺序依次对应,每个电力负荷周期对应得到1张RGB图像,并作为异步电动机的特征图像;每个电力负荷时间序列得到一组RGB图像,并按时间顺序组成异步电动机的特征图像时间序列;
步骤S2,深度神经网络构建;
所述深度神经网络的结构依次包括:输入层、卷积神经网络、内部LSTM网络、外部LSTM网络和输出层;所述输入层、卷积神经网络、内部LSTM网络、外部LSTM网络和输出层依次连接;
步骤S3,模型训练;
以异步电动机的特征图像时间序列和相应的工况类型分别作为输入和输出数据,训练深度神经网络,得到故障诊断模型;
所述实时运行状态监测过程包括以下步骤:
步骤T1,数据预处理;
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中南大学,未经中南大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201910471732.1/2.html,转载请声明来源钻瓜专利网。
- 上一篇:一种旋转变压器综合测试实验台
- 下一篇:新能源汽车电机测试台