[发明专利]一种噪声信道下的迭代学习控制系统输入信号估计方法有效
申请号: | 201910491159.0 | 申请日: | 2019-06-06 |
公开(公告)号: | CN110110711B | 公开(公告)日: | 2021-06-04 |
发明(设计)人: | 黄立勋;霍林林;刘伟华;张喆;陈雪艳;张秋闻;赵永博;王丹丹 | 申请(专利权)人: | 郑州轻工业学院 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06F17/16;H04B17/373 |
代理公司: | 郑州优盾知识产权代理有限公司 41125 | 代理人: | 栗改 |
地址: | 450002 *** | 国省代码: | 河南;41 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 噪声 信道 学习 控制系统 输入 信号 估计 方法 | ||
本发明提出了一种噪声信道下的迭代学习控制系统输入信号估计方法,用于解决在测量信号和控制信号无线传输时受到信道噪声干扰,不能实现精确追踪的问题。本发明的步骤为:分别获取控制器端和执行器端的输入信号迭代差值和噪声迭代差值的关系表达式,然后用两个关系表达式构建用于输入信号迭代差值估计的滤波方程,最后用估计得到的输入信号迭代差值得到执行器端用于驱动执行器的输入信号。本发明通过在执行器端对接收到的控制信号进行滤波,有效改善了存在信道噪声情况下的迭代学习控制系统输出的跟踪精度。
技术领域
本发明涉及网络控制的技术领域,尤其涉及一种噪声信道下的迭代学习控制系统输入信号估计方法,用于无线信道环境下存在信道噪声时的保障迭代学习控制系统收敛性的输入信号估计。
背景技术
近些年来,随着信息通信技术的飞速发展,网络控制系统的概念随之提出并得到了极大关注。这种系统利用有线或无线通信方式传输相应的测量信号和控制信号,进而构成闭合的控制回路。特别是无线通信网络下的控制系统,此类系统不仅具备了低成本、重量轻、布线简单、易于安装和维护等优点,而且控制器和系统平台实现了分离,使用方式更为灵活。
当受控对象具备重复运动特性时,网络控制系统的控制器采用迭代学习控制(ILC)策略是一种有效的方式。这种方式通过给定初始输入,对受控对象进行尝试,得到相应的输出误差,并利用输出误差和当前输入进行迭代学习,进而修正下次控制所需的输入信号。随着“学习、修正”过程的不断进行,当学习增益满足一定条件,输出误差即可得到收敛。相较于PID等其他控制策略,ILC策略具备了简单且有效的特点。
显然,无线通信方式下的ILC系统同时具备了上述两方面的优点。但是,通信链路的引入也给ILC系统收敛性能的保障带来了新的挑战。由于无线信道的不可靠性,通过其传输的测量信号和控制信号不可避免地会受到各种干扰影响,其中最为典型的一种就是测控信号无线传输过程中叠加上的信道噪声。显然,无线信道引入的信道噪声会干扰控制器迭代学习过程的进行,并随着节点学习过程的进行得到累积,进而影响系统输出的收敛性。
需要指出的是,过程噪声作用下的ILC系统收敛性一直是该领域的研究重点之一,且提出了遗忘因子,可变增益等多种方法用来抑制其对系统收敛性的影响,但与过程噪声不同的是,信道噪声是测控信号在无线传输过程中叠加上的,属于外部干扰,而过程噪声是在系统状态更新过程中引入的,属于内部干扰。因此,用来处理过程噪声干扰的方法不能够直接用来处理信道噪声的干扰。
发明内容
针对测量信号和控制信号均通过无线信道传输受到噪声干扰,本发明提出一种噪声信道下的迭代学习控制系统输入信号估计方法,从而保障系统输出在存在信道噪声干扰的情况下仍能实现对期望轨迹的精确跟踪。
为了达到上述目的,本发明的技术方案是这样实现的:一种噪声信道下的迭代学习控制系统输入信号估计方法,首先分别获取控制器端和执行器端的输入信号迭代差值和噪声迭代差值的关系表达式,然后用两个关系表达式构建用于输入信号迭代差值估计的滤波方程,最后用估计得到的输入信号迭代差值得到执行器端用于驱动执行器的输入信号,其步骤如下:
步骤一:利用超级向量法对包含噪声干扰的系统模型进行转换,在控制端和执行端分别获取输入信号向量迭代差值和噪声向量迭代差值的关系表达式;
步骤二:利用步骤一获得的输入信号向量迭代差值和噪声向量迭代差值的两个关系表达式构建用于输入信号估计的状态方程和测量方程;
步骤三:根据步骤二获得的用于输入信号估计的状态方程和测量方程利用卡尔曼滤波估计理论构建用于输入信号迭代差值估计的预测方程组;
步骤四、根据步骤三得到的预测方程组构建用于输入信号迭代差值估计的更新方差组,并分别在迭代域用预测值对输入信号估计值进行更新;
步骤五、利用估计得到的输入信号迭代差值获得用于驱动执行端的输入信号。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于郑州轻工业学院,未经郑州轻工业学院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201910491159.0/2.html,转载请声明来源钻瓜专利网。