[发明专利]表面缺陷采集系统、表面缺陷检测方法、装置及存储介质有效

专利信息
申请号: 201910491285.6 申请日: 2019-06-06
公开(公告)号: CN110243831B 公开(公告)日: 2022-02-15
发明(设计)人: 姚进发;林荣;胡玮 申请(专利权)人: 锐捷网络股份有限公司
主分类号: G01N21/88 分类号: G01N21/88
代理公司: 北京同达信恒知识产权代理有限公司 11291 代理人: 黄志华
地址: 350002 福建省福州市仓*** 国省代码: 福建;35
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 表面 缺陷 采集 系统 检测 方法 装置 存储 介质
【权利要求书】:

1.一种表面缺陷采集系统,其特征在于,包括:

支撑装置,用于支撑待检物体,并使所述待检物体的待检测面与水平面平行;

可编程光源,设置在所述支撑装置中心轴的第一侧上方,用于输出多组明暗条纹相间的面光源,并照射在所述待检测面,所述中心轴与所述水平面垂直;

图像采集装置,设置在所述支撑装置中心轴的第二侧上方,所述第二侧与所述第一侧相对,且位于沿预设方向延伸的同一纵切面中,用于同时从不同角度对所述待检测面进行图像数据采集;

控制装置,用于控制所述支撑装置水平移动或绕指定轴转动,使所述待检测面与所述水平面平行,并控制所述可编程光源或所述支撑装置沿预设方向移动,使所述多组明暗条纹按设定距离沿所述预设方向在所述待检测面移动指定次数,每移动一次控制所述图像采集装置采集一次所述待检测面的图像数据,所述预设方向为明暗条纹交替出现的任一方向;

其中,所述图像采集装置包括:

第一图像采集器、第二图像采集器以及第三图像采集器,并同时对所述待检测面进行图像采集;

所述第一图像采集器的中心轴与所述待检测面的中心在水平方向上的距离为8.9cm,在垂直方向上的距离为15.2cm,所述第一图像采集器的中心轴与所述水平面的夹角为79°;

所述第二图像采集器的中心轴与所述待检测面的中心在水平方向上的距离为11.8cm,在垂直方向上的距离为13cm,所述第二图像采集器的中心轴与所述水平面的夹角为54°;

所述第三图像采集器的中心轴与所述待检测面的中心在水平方向上的距离为17.5cm,在垂直方向上的距离为6.8cm,所述第三图像采集器的中心轴与所述水平面的夹角为34°。

2.如权利要求1所述的表面缺陷采集系统,其特征在于,所述支撑装置具有六个自由度,在所述支撑装置的支撑臂的三维空间中,所述六个自由度分别为沿横轴X、纵轴Y、竖轴Z三个方向移动,以及分别绕所述横轴X、所述纵轴Y、所述竖轴Z旋转;所述横轴X、纵轴Y、竖轴Z分别为所述三维空间的三个坐标方向。

3.如权利要求1所述的表面缺陷采集系统,其特征在于,所述可编程光源的中心与所述待检测面在水平方向的距离范围为10~26cm,所述可编程光源的中心与所述待检测面在垂直方向的距离为15cm。

4.如权利要求1所述的表面缺陷采集系统,其特征在于,所述多组明暗条纹中每组明条纹与暗条纹的宽度比为1:3。

5.如权利要求4所述的表面缺陷采集系统,其特征在于,每组明暗条纹中明条纹的宽度为3mm,暗条纹的宽度为9mm。

6.如权利要求5所述的表面缺陷采集系统,其特征在于,所述设定距离与所述指定次数的乘积小于等于一个暗条纹的宽度。

7.如权利要求1-6任一项所述的表面缺陷采集系统,其特征在于,所述支撑装置、所述可编程光源、所述图像采集装置均设置在同一封闭的黑暗空间内。

8.一种基于权利要求1-7任一项所述的表面缺陷采集系统进行的表面缺陷检测方法,其特征在于,包括:

利用所述表面缺陷采集系统对待检物体的待检测面进行图像采集,获得所述待检测面的图像数据集;

对所述图像数据集中的每个图像数据进行预处理,获得预处理后的图像数据集;

利用检测模型对所述预处理后的图像数据集进行表面缺陷分析,获得分析结果,并将所述分析结果呈现给用户,所述检测模型是预先通过对训练样本集进行深度学习训练得到的;

其中,所述检测模型的训练过程,包括:

利用深度学习框架搭建待检测模型,确定所述待检测模型的初始网络参数;

将所述训练样本集中的第一样本子集输入所述待检测模型,采用深度学习Adma算法对所述待检测模型输出的误差参数进行迭代优化,直到达到预设优化次数或所述误差参数的损失误差的平均值趋于一恒定值,获得第一网络参数;

用所述训练样本集中的第二样本子集对所述第一网络参数进行微调,获得所述检测模型;所述训练样本集由与所述待检测面具有同材质的产品表面的瑕疵图像和无瑕疵图像组成,所述第一样本子集与所述第二样本子集不同。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于锐捷网络股份有限公司,未经锐捷网络股份有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201910491285.6/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top