[发明专利]执行自动机器学习的方法和装置在审
申请号: | 201910540759.1 | 申请日: | 2019-06-21 |
公开(公告)号: | CN110705719A | 公开(公告)日: | 2020-01-17 |
发明(设计)人: | 涂威威;李文昊;陈雨强 | 申请(专利权)人: | 第四范式(北京)技术有限公司 |
主分类号: | G06N99/00 | 分类号: | G06N99/00 |
代理公司: | 11286 北京铭硕知识产权代理有限公司 | 代理人: | 曾世骁;苏银虹 |
地址: | 100085 北京市海淀区上*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 机器学习模型 分布状态 预测数据 自动机器 方法和装置 学习方式 自动更新 预设 监测 学习 | ||
提供了一种执行自动机器学习的方法和装置,所述方法包括:通过自动机器学习方式获取包括至少一个机器学习模型的初始机器学习模型组;持续获取预测数据;监测持续获取的预测数据中是否出现超出预设阈值的分布状态变化;在出现超出阈值的分布状态变化的情况下,自动更新初始机器学习模型组。
技术领域
本申请总体说来涉及人工智能领域,更具体地讲,涉及一种执行自动机器学习的方法和装置。
背景技术
随着海量数据的出现,人工智能技术迅速发展,而机器学习是人工智能发展到一定阶段的必然产物,其致力于通过计算的手段,从大量数据中挖掘有价值的潜在信息。
在机器学习领域,往往通过将经验数据提供给机器学习算法来训练机器学习模型以确定构成机器学习模型的理想参数,而训练好的机器学习模型可被应用于在面对新的预测数据时提供相应的预测结果。例如机器学习模型可被应用于如下场景:图像处理场景、语音识别场景、自然语言处理场景、自动控制场景、智能问答场景、业务决策场景、推荐业务场景、搜索场景和异常行为检测场景。当然机器学习也可以被应用于以上未列出的其他场景。
然而,机器学习过程中所涉及的许多工作(例如,特征预处理和选择、模型算法选择、超参数调整等)往往既需要具备计算机(特别是机器学习)专业知识,也需要具备与预测场景相关的具体业务经验,因此,需要耗费大量的人力成本。为了提高机器学习效率,近年来提出了自动机器学习(AutoML)技术,其实现了从数据预处理到参数选择的一系列流程的自动化,因此,大大降低了机器学习门槛并且降低了用于机器学习的人力成本。
然而,AutoML技术在进行自动机器学习时事实上始终假设用于机器学习模型训练的数据是独立同分布的,或者说,假设用于机器学习模型训练的数据的分布状态是不变的(即,静态数据),而并未考虑数据分布状态变化的情况。但是,事实上,在应用机器学习的实际场景中,随着时间的推移,数据的分布状态常常会发生变化,而如果仍然按照先前训练出的机器学习模型针对数据分布状态已经发生变化的新数据执行预测,则很难获得较准确的预测结果。鉴于此,需要更加完善的自动机器学习技术。
发明内容
根据本申请示例性实施例,提供了一种执行自动机器学习的方法,所述方法可包括:通过自动机器学习方式获取包括至少一个机器学习模型的初始机器学习模型组;持续获取预测数据;监测持续获取的预测数据中是否出现超出预设阈值的分布状态变化;在出现超出阈值的分布状态变化的情况下,自动更新初始机器学习模型组。
可选地,在所述初始机器学习模型组中,各个机器学习模型针对预测数据提供的预测结果可被进行加权求和以作为所述初始机器学习模型组针对预测数据的预测结果,并且,监测步骤可包括:监测持续获取的预测数据的分布状态和/或初始机器学习模型组针对所述预测数据的预测效果,以确定是否出现超出预设阈值的分布状态变化。
可选地,在出现超出预设阈值的分布状态变化的情况下,固定地使用或自适应地使用预定的多种更新方式之一来自动更新初始机器学习模型组。
可选地,所述预定的多种更新方式可包括以下更新方式:第一更新方式,重新训练新的机器学习模型组以替代初始机器学习模型组;第二更新方式,调整初始机器学习模型组中的各个机器学习模型的权重;或者第三更新方式,训练新的机器学习模型组并将新的机器学习模型组与初始机器学习模型组组合来构成更新后的机器学习模型组。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于第四范式(北京)技术有限公司,未经第四范式(北京)技术有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201910540759.1/2.html,转载请声明来源钻瓜专利网。