[发明专利]复杂工况下HCCI发动机燃烧正时控制系统有效

专利信息
申请号: 201910578255.9 申请日: 2019-06-28
公开(公告)号: CN110259590B 公开(公告)日: 2021-11-09
发明(设计)人: 郑太雄;张良斌;杨新琴 申请(专利权)人: 重庆邮电大学
主分类号: F02D41/00 分类号: F02D41/00;F02D41/24;F02D41/14;F02D41/30;F02D37/02;F02D43/00
代理公司: 北京同恒源知识产权代理有限公司 11275 代理人: 赵荣之
地址: 400065 *** 国省代码: 重庆;50
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 复杂 工况 hcci 发动机 燃烧 正时 控制系统
【说明书】:

发明涉及一种复杂工况下HCCI发动机燃烧正时控制系统,属于发动机控制技术领域。本发明首先以进气门关闭正时θIVC、发动机转速N、燃料当量比φ为输入,发动机燃烧正时估计值为输出,建立ELMAN神经网络HCCI发动机黑箱模型。利用该黑箱模型预测发动机燃烧正时。选择进气门关闭正时θIVC为控制变量,以发动机转速N和期望的燃烧正时角度为输入变量,设计BP神经网络控制器。通过燃烧正时估计值与期望的燃烧正时角度之间的误差ek来调整BP神经网络中的链接权值,让神经网络进行学习,直至误差ek小于设定误差阈值。此时,BP神经网络控制器可根据发动机转速和期望的燃烧正时角度调整进气门关闭正时,实现对复杂工况下HCCI发动机燃烧正时的控制。

技术领域

本发明属于均质充气压燃(Homogeneous Charge Compression Ignition,HCCI)发动机在复杂工况下的燃烧正时控制领域,具体涉及均质充气压燃发动机黑箱模型的建立和复杂工况下发动机燃烧正时控制器的设计。

背景技术

全球汽车数量的持续增加给环境和能源带来巨大压力,为了缓解环境压力,相关部门对汽车发动机尾气排放进行了严格规定。面对严格的规定标准,普通的汽油发动机和柴油发动机很难达到相关要求。均质充气压燃(Homogeneous Charge CompressionIgnition,HCCI)是一种公认的发动机新型燃烧方式,它综合了汽油发动机和柴油发动机的特点,具有高热效率、低排放、构造易实现、高燃油利用率等优点。HCCI发动机技术可满足规定的汽车尾气排放标准,是未来发动机技术发展的方向。

为了充分发挥HCCI发动机的优点,需要把燃料燃烧50%的曲轴转角控制在上止点前3CAD至8CAD的范围内。由于缺乏直接触发HCCI的燃烧机制,控制HCCI发动机成为最主要的技术难点。目前主要的控制方法包括进气热管理,可变压缩比控制,可变阀门正时控制等。其中,可变阀门正时控制由于具有易于实现和控制灵活的特点,应用更为广泛。

由于HCCI发动机无法直接测量,需要建立精确的模型进行估计。目前主要的模型包括:化学动力学模型、黑箱模型、灰箱模型。建立化学动力学模型需要许多参数,而发动机有很多参数无法用传感器进行直接测量,只能用观测器进行估计。建立模型使用的参数估计值会使得模型的误差更大。神经网络具有很强的函数逼近能力,自学习能力,广泛用于处理各种非线性问题。ELMAN神经网络是一种具有局部记忆和反馈的递归神经网络,其输出取决于输入和前一时刻的输出。考虑到发动机上一循环的状态也会对下一循环造成影响,采用ELMAN神经网络建立HCCI发动机黑箱模型。基于ELMAN神经网络的黑箱模型相比于其它黑箱模型,更能够体现发动机实际的工作状态,预测结果更符合实际,能够起到很好的模拟效果。

考虑到实际中的车辆发动机时常处于变工况的环境下,转速的频繁变化造成气缸内热扰动,燃烧正时波动大。传统的PID控制器、模型预测控制器、滑膜控制器等可实现恒定工况下的HCCI发动机燃烧正时控制,复杂工况下的控制效果差。因此,需要对复杂工况下的HCCI发动机控制问题进一步的研究。神经网络具有很强的非线性映射能力,可利用神经网络模拟输入与输出之间的非线性函数,建立神经网络控制器,实现复杂工况下的HCCI发动机燃烧正时控制。

发明内容

有鉴于此,本发明的目的在于提供一种复杂工况下HCCI发动机燃烧正时控制系统,首先建立ELMAN神经网络黑箱模型对HCCI发动机燃烧正时进行估计;其次,设计BP神经网络控制器,根据发动机转速和期望的燃烧正时角度调整进气门关闭正时,实现复杂工况下HCCI燃烧正时的控制。

为达到上述目的,本发明提供如下技术方案:

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于重庆邮电大学,未经重庆邮电大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201910578255.9/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top