[发明专利]用于深度学习的可视化编程在审

专利信息
申请号: 201910578856.X 申请日: 2019-06-28
公开(公告)号: CN112148276A 公开(公告)日: 2020-12-29
发明(设计)人: 林昊翔;陈程;杨懋;柳书广 申请(专利权)人: 微软技术许可有限责任公司
主分类号: G06F8/34 分类号: G06F8/34;G06N20/00
代理公司: 北京市金杜律师事务所 11256 代理人: 王茂华;李兴斌
地址: 美国华*** 国省代码: 暂无信息
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 用于 深度 学习 可视化 编程
【说明书】:

本公开的多个实现涉及用于深度学习的可视化编程。在一种计算机实现的方法中,呈现人工神经网络的可视化表示,所述可视化表示包括表示所述人工神经网络的层的图形元件;响应于接收到针对所述图形元件的拖放操作,修改所述人工神经网络的中间表示,所述中间表示独立于深度学习框架,所述拖放操作修改所述图形元件之间的连接关系;以及基于所述人工神经网络的中间表示,修改所述人工神经网络的针对目标深度学习框架的代码。

背景技术

由于深度学习的广泛应用,学习和使用深度学习编程的开发者变得越来越多。然而,在目前的深度学习编程过程中,开发者需要编写大量的代码来预处理数据和构建深度学习模型。初学者通常淹没在大量的底层代码中,难以快速理解和掌握深度学习编程。

发明内容

在一种计算机实现的方法中,呈现人工神经网络的可视化表示,所述可视化表示包括表示所述人工神经网络的层的图形元件;响应于接收到针对所述图形元件的拖放操作,修改所述人工神经网络的中间表示,所述中间表示独立于深度学习框架,所述拖放操作修改所述图形元件之间的连接关系;以及基于所述人工神经网络的中间表示,修改所述人工神经网络的针对目标深度学习框架的代码。

提供发明内容部分是以一种简化的形式有选择地介绍发明构思,其在下文的具体实施方式中将被进一步描述。发明内容部分无意标识要求保护的主题的关键特征或主要特征,也无意限制要求保护的主题的范围。

附图说明

图1示出了能够实施本公开的多个实现的计算设备的框图;

图2示出了根据本公开的一些实现的可视化编程架构的示意图;

图3示出了根据本公开的一些实现的人工神经网络的可视化表示的示意图;以及

图4示出了根据本公开的一些实现的用于可视化编程的方法的流程图。

这些附图中,相同或相似参考符号用于表示相同或相似元素。

具体实施方式

现在将参照若干示例实现来论述本公开。应当理解,论述了这些实现仅是为了使得本领域普通技术人员能够更好地理解且因此实现本公开,而不是暗示对本主题的范围的任何限制。

如本文所使用的,术语“包括”及其变体要被解读为意味着“包括但不限于”的开放式术语。术语“基于”要被解读为“至少部分地基于”。术语“一个实现”和“一种实现”要被解读为“至少一个实现”。术语“另一个实现”要被解读为“至少一个其他实现”。术语“第一”、“第二”等等可以指代不同的或相同的对象。下文还可能包括其他明确的和隐含的定义。

以下参考附图来说明本公开的基本原理和若干示例实现。图1示出了能够实施本公开的多个实现的计算设备100的框图。应当理解,图1所示出的计算设备100仅仅是示例性的,而不应当构成对本公开所描述的实现的功能和范围的任何限制。如图1所示,计算设备100可以由通用计算设备来实现,也可以由专用计算设备来实现。计算设备100的部件可以包括但不限于一个或多个处理器或处理单元110、存储器120、存储设备130、一个或多个通信单元140、一个或多个输入设备150以及一个或多个输出设备160。

在一些实现中,计算设备100可以被实现为具有计算能力的各种用户终端或服务终端。服务终端可以是各种服务提供方提供的服务器、大型计算设备等。用户终端诸如是任意类型的移动终端、固定终端或便携式终端,包括移动手机、站点、单元、设备、多媒体计算机、多媒体平板、互联网节点、通信器、台式计算机、膝上型计算机、笔记本计算机、上网本计算机、平板计算机、个人通信系统(PCS)设备、个人导航设备、个人数字助理(PDA)、音频/视频播放器、数码相机/摄像机、定位设备、电视接收器、无线电广播接收器、电子书设备、游戏设备或者其任意组合,包括这些设备的配件和外设或者其任意组合。还可预见到的是,计算设备100能够支持任意类型的针对用户的接口(诸如“可佩戴”电路等)。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于微软技术许可有限责任公司,未经微软技术许可有限责任公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201910578856.X/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top