[发明专利]基于先验知识引导条件生成对抗网络的单张图像去雾方法有效

专利信息
申请号: 201910580136.7 申请日: 2019-06-28
公开(公告)号: CN110288550B 公开(公告)日: 2020-04-24
发明(设计)人: 苏延召;崔智高;李爱华;王涛;姜柯;蔡艳平;冯国彦;李庆辉 申请(专利权)人: 中国人民解放军火箭军工程大学
主分类号: G06T5/00 分类号: G06T5/00;G06T5/40;G06T7/90;G06N3/08;G06N3/04
代理公司: 西安创知专利事务所 61213 代理人: 谭文琰
地址: 710025 陕西*** 国省代码: 陕西;61
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 先验 知识 引导 条件 生成 对抗 网络 单张 图像 方法
【说明书】:

发明公开了一种基于先验知识引导条件生成对抗网络的单张图像去雾方法,包括步骤:一、建立雾化图像训练集;二、单张随机有雾图像的初步去雾;三、初步去雾图像的去雾训练;四、计算参考真值图像和初步去雾图像的去雾训练图像的真伪值;五、计算图像损失目标函数;六、更新权重参数集合;七、调取新的单张随机有雾图像,循环步骤二至步骤六,直至真伪值达到设定值;八、单张实际有雾图像去雾。本发明利用了先验知识来指导编码网络进行无雾结果生成,利用了先验知识得到的部分有用信息,同时又利用了深度神经网络的特征建模能力弥补了先验知识的不足,不需要在深度神经网络中显示建立大气散射模型,而是将其视为图像的条件生成,去雾效果好。

技术领域

本发明属于图像处理技术领域,具体涉及一种基于先验知识引导条件生成对抗网络的单张图像去雾方法。

背景技术

在雾、霾之类的恶劣天气下采集的图像会由于大气散射的作用出现质量退化现象,使图像颜色偏灰白色,对比度降低,物体特征难以辨认,不仅使视觉效果变差,图像观赏性降低,还会导致图像内容的理解出现偏差。图像去雾就是指用特定的方法和手段,使空气中悬浮微粒对图像的不良影响降低甚至消除。单张图像去雾是指在只有一张有雾图像的条件下,对其进行去雾处理得到清晰的图像。

目前单张图像去雾方法主要分为三大类:第一类是基于图像增强的方法,第二类是基于物理模型的方法,第三类是基于深度学习的方法。

基于图像增强的方法的本质是对被降质的图像进行增强,改善图像的质量。比如常见的直方均衡、对数变换、幂律变换、锐化、小波变换等。通过这些方法增强图像的对比度或突出图像的特征。与常见的对比度增强方法不同,另一种常见的图像增强的方法是基于颜色恒常性和视网膜皮层理论的Retinex方法。该方法将图像分解为本质图像与照度图像的乘积,从而消除因为受雾霾遮挡的光照因素对图像成像的影响。Retinex方法比传统的对比度提升方法相比,其得到的去雾图像具有更好的局部对比度,颜色失真较小。但由于Retinex方法本身也是一个病态问题,只能进行近似估计,因而也在一定程度上影响了图像去雾效果。

基于物理模型的方法利用大气散射模型(I=JT+(1-T)A,其中I表示有雾图像,J表示无雾图像)分别估计场景介质透视率T与全局大气光照A,从而得到清晰的无雾图像。然而在只有单张有雾图像条件下,估计T和A也是一个病态问题,只能进行近视估计。利用大气散射模型将有雾图像恢复到无雾图像的方法,总体上可以分为三类:第1类是基于深度信息的方法;第2类是基于大气光偏振特性的去雾算法;第3类是基于先验知识的方法。前两类方法通常都需要人工配合,才能得到较好的结果,而第3类方法是目前比较常见的方法,比如基于暗通道统计先验的方法,基于颜色统计先验的方法。这些方法由于是通过统计信息得到的知识,并不能适应所有场景,如基于暗通道先验知识的方法对天空等较亮的区域估计透视系统就会出现偏差,导致去雾后的图像整体偏暗。

基于深度学习的方法利用人工合成的有雾图像数据集和卷积神经网络等技术来实现去雾,具体分为两类:(1)是利用深度神经网络表示大气散射模型,自动学习并估计出对应的T和A。与基于先验知识等方法估计透视系数与大气光照不同,这类方法主要从数据进行学习,从而克服了部分先验知识的偏差,但这类方法通常需要已知场景深度才能合成得到T,以便进行监督学习;(2)在不对T和A作任何假设或者估计的基础上,直接将去雾过程视为图像的变换或者是图像合成。基于图像合成的方法通常利用对比度增强、白平衡等方法对有雾图像进行预处理,然后再通过神经网络学习权重函数,以便进行融合预处理之后的图像,从而实现去雾。但这种方法容易对预处理图像有较强的依赖性,并且单帧图像处理时间较长。基于图像变换的方法直接利用神经网络学习有雾图像与无雾图像之间的非线性变换函数,从而得到无雾图像。但这种方法因为缺乏真实场景的对照,因而对数据的依赖性非常强。

发明内容

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国人民解放军火箭军工程大学,未经中国人民解放军火箭军工程大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201910580136.7/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top