[发明专利]基于集成GMDH框架的旋转机械剩余寿命预测方法有效
申请号: | 201910630036.0 | 申请日: | 2019-07-12 |
公开(公告)号: | CN110555230B | 公开(公告)日: | 2021-02-26 |
发明(设计)人: | 辛格;程强;秦勇;贾利民;王豫泽;张顺捷;赵雪军;程晓卿;王莉 | 申请(专利权)人: | 北京交通大学 |
主分类号: | G06F30/17 | 分类号: | G06F30/17;G06F30/20;G06N3/08;G06N3/04;G06F119/04 |
代理公司: | 北京市商泰律师事务所 11255 | 代理人: | 邹芳德 |
地址: | 100044 北*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 集成 gmdh 框架 旋转 机械 剩余 寿命 预测 方法 | ||
本发明公开了一种基于集成GMDH框架的旋转机械剩余寿命预测方法,所述方法包括以下步骤:S1,采集多个同一种类旋转机械从正常运行到故障失效过程中的多个传感器数据,通过数据处理,得到训练数据集合W;S2,将数据集通过不同的划分,分别用于构建三个具有差异性的GMDH预测网络;S3,将三个GMDH网络在训练样本上的预测输出作为三层BP神经网络的输入对BP神经网络进行训练,该BP神经网络用于对三个GMDH网络的预测结果进行集成;S4,利用所述集成GMDH框架对旋转机械剩余寿命进行预测,计算并输出剩余寿命预测值。本发明与经典的LSTM网络和单个GMDH网络相比,能有效提高预测精度和泛化能力,具有更大的实际指导意义。
技术领域
本发明属于旋转机械剩余寿命预测技术领域,具体涉及一种基于集成GMDH框架的旋转机械剩余寿命预测方法。
背景技术
在机械工业领域中,旋转机械设备是最常用的设备,常常工作于重载荷、高强度等恶劣工作环境,也因此容易产生各类故障而影响其正常运行,甚至中断生产,严重地影响生产质量和工作效率。一旦故障发生而不能被及时发现和妥善处置,故障点可能快速蔓延,从而造成连锁反应,使整个生产线上的成套设备都瘫痪,同时极易引发灾难事故,威胁到人们的生命财产安全。因此,为了保障设备长期稳定地安全运行,实现旋转机械设备的早期故障预报,研究旋转机械剩余寿命预测技术显得尤为迫切和必要。
目前常用的预测方法是基于数据驱动的预测方法,该方法主要利用机器学习算法,通过历史数据建立系统的状态数据与剩余寿命之间的关联,从而预测设备的剩余寿命。基于数据驱动的预测方法主要有LSTM网络和GMDH网络,其中LSTM(Long Short-TermMemory,长短时记忆)网络主要分为两步:第一步进行特征提取,对数据进行经验模态分解,并以分解得到的IMF能量熵之和作为机械状态特征,第二步设计LSTM网络的结构并进行仿真验证,从而有效避免参数选取的难题,但是它通过调整窗口宽度等步骤具有的结构上的优势并不能带来综合不同维度参数后的最优解。Ivakhnenko提出的GMDH网络能够根据训练数据自组织生成拟合精度与泛化能力达到平衡的最优网络结构,避免模型结构的过拟合与不足拟合,减少建模者主观因素的影响。因此,GMDH模型广泛应用于各种领域的预测,并取得了很好的预测效果。但是GMDH网络的建模过程基于对训练样本的划分,不同的样本划分将产生不同的模型,这些模型是在当前样本划分下记忆能力与泛化能力达到最优平衡的模型,但是并不能确保这些模型的全局最优性。因此,运用单一GMDH网络建立的预测模型易陷入局部最优,泛化能力不强。
发明内容
本发明的目的是解决目前旋转机械剩余寿命的预测方法泛化能力不强、模型适用条件单一等问题,提出了一种基于集成GMDH框架的旋转机械剩余寿命预测方法,主要包括如下步骤:
S1.选取多个同一种类旋转机械,分别采集从正常运行到故障失效过程中的多个传感器数据,构造历史数据集{X,Y},其中X为M×N矩阵,每行xt∈RN为t时刻N个传感器的读数,M为不同时间采集的样本总数,Y为M×1向量,每行yt∈R为t时刻设备真实剩余寿命,通过数据处理得到训练数据集W;
S2.将训练数据集W进行有效划分,分别用于构建三个具有差异性的GMDH预测网络;
S3.将历史数据集的所有xt同时输入三个GMDH网络,得到的三个预测值组合成一个向量作为三层BP神经网络的输入,yt作为BP神经网络的输出,对三层BP神经网络进行训练,得到一个由三个GMDH网络和一个三层BP神经网络组合而成的集成GMDH框架;
S4.利用所述集成GMDH框架对旋转机械剩余寿命进行预测,计算并输出剩余寿命预测值。
进一步地,所述S1中的数据处理过程如下:
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京交通大学,未经北京交通大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201910630036.0/2.html,转载请声明来源钻瓜专利网。