[发明专利]一种智能驾驶方法及智能驾驶系统有效

专利信息
申请号: 201910630930.8 申请日: 2019-07-12
公开(公告)号: CN110893860B 公开(公告)日: 2021-03-30
发明(设计)人: 胡伟龙;周亚兵;刘华伟 申请(专利权)人: 华为技术有限公司
主分类号: B60W60/00 分类号: B60W60/00;B60W50/00;B60W40/06
代理公司: 暂无信息 代理人: 暂无信息
地址: 518129 广东*** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 智能 驾驶 方法 系统
【说明书】:

本申请实施例提供一种智能驾驶方法及智能驾驶系统,以解决现有的智能车辆无法准确识别出驾驶场景的问题。该方法可以包括:获取车辆当前时刻的特征参数以及车辆在未来预设时间段内驾驶场景的道路属性;其中,所述特征参数可以包括结构化语义信息、道路属性以及交通态势频谱;比较当前时刻的特征参数与场景特征库中标准场景的特征参数,以及比较车辆在未来预设时间段内驾驶场景的道路属性与场景特征库中标准场景的道路属性,根据比较结果确定每个场景类与所述车辆当前时刻的驾驶场景的总相似度;将N个场景类中总相似度最高的第一场景类确定为当前时刻的驾驶场景;根据确定结果控制车辆进行智能驾驶。

技术领域

本申请涉及自动驾驶技术领域,尤其涉及一种智能驾驶方法及智能驾驶系统。

背景技术

智能驾驶车辆在普通车辆的基础上增加了先进的传感器(雷达、摄像)、控制器、执行器等装置,通过车载传感系统和信息终端实现与人、车、路等的智能信息交换,使车辆具备智能的环境感知能力,能够自动分析车辆行驶的安全及危险状态,并使车辆按照人的意愿到达目的地,最终实现替代人来操作的目的以减轻人驾驶汽车的负担。

在现有技术中,智能驾驶车辆的总控制系统,会统一采集各个分系统的各个部分的数据,然后对这些数据统一处理,进而对智能驾驶车辆进行控制。如:可以统计分析获取的道路环境视频图像并建立城市道路场景、乡村道路场景、高速公路场景识别数据库,并利用深度卷积神经网络对数据库内样本图片进行特征提取和卷积训练,得到卷积神经网络分类器,最终将实时感知图片输入卷积神经网络分类器进行识别,分类出当前车辆所处驾驶场景。

然而,上述采用卷积神经网络分类器对场景进行分类的方式,在雨天、雾天、光照条件等不好的情况下容易造成实时感知图像不清晰,降低将实时感知图片输入卷积神经网络分类器进行识别的准确性,进而无法准确识别出当前驾驶场景,影响车辆的智能驾驶。

发明内容

本申请实施例提供一种智能驾驶方法及智能驾驶系统,以解决现有无法准确识别出当前驾驶场景,影响车辆的智能驾驶的问题。

为达到上述目的,本申请实施例提供如下技术方案:

第一方面,本申请实施例提供一种智能驾驶方法,所述方法包括:获取车辆当前时刻的特征参数(结构化语义信息、道路属性以及交通态势频谱)以及车辆在未来预设时间段内驾驶场景的道路属性,比较当前时刻的特征参数与场景特征库中标准场景的特征参数、以及比较车辆在未来预设时间段内驾驶场景的道路属性与场景特征库中标准场景的道路属性,根据比较结果确定场景特征库中每个场景类与所述车辆当前时刻的驾驶场景的总相似度;将N个场景类中总相似度最高的第一场景类确定为当前时刻的驾驶场景;根据确定结果控制车辆的驾驶状态。基于第一方面提供的方法,可以基于结构化语义信息、道路属性以及交通态势频谱三种维度识别车辆当前时刻属于的场景类,使得场景类识别时参考的信息更加全面、可靠,提高了场景识别的准确性,提高了智能驾驶的可实现性。同时,基于结构化语义信息而不是图片识别场景类,降低了运算复杂度。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华为技术有限公司,未经华为技术有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201910630930.8/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top