[发明专利]一种基于深度学习的端到端通信系统建立方法有效
申请号: | 201910633748.8 | 申请日: | 2019-07-15 |
公开(公告)号: | CN110460402B | 公开(公告)日: | 2021-12-07 |
发明(设计)人: | 蒋志函;张佳;蒋伊琳 | 申请(专利权)人: | 哈尔滨工程大学 |
主分类号: | H04B17/391 | 分类号: | H04B17/391;G06N3/08 |
代理公司: | 暂无信息 | 代理人: | 暂无信息 |
地址: | 150001 黑龙江省哈尔滨市南岗区*** | 国省代码: | 黑龙江;23 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 深度 学习 端到端 通信 系统 建立 方法 | ||
本发明属于信息通信技术领域,具体涉及一种基于深度学习的端到端通信系统建立方法。本发明方法分为两个阶段。首先是建立自编码器神经网络并复杂化信道层,以随机数仿真为训练集对网络进行初步训练,以获得一个对信道干扰有适应性的编码方式。之后是通过USRP收集大量实际信道下的通信数据并以此来作为训练集对译码层进行单独训练使其针对实际情况下的通信具有更好的性能。本发明可以获得一种完全不同于传统通信系统建立方式的通信系统,其相对于传统系统有更优的通信性能,且对真实信道的适应能力有更好的鲁棒性。
技术领域
本发明属于信息通信技术领域,具体涉及一种基于深度学习的端到端通信系统建立方法。
背景技术
传统的通信系统往往由发送机、信道、接收机的各个子模块联合组成并使用,但是一来实际信道十分复杂,传统的数学模型只能够做到线性近似并不能完全描述,二来各个子模块的最优并不能代表其构成系统是最优的,为了解决这两点问题,本发明提出基于深度学习的端到端通信系统建立方法。本发明方法直接通过构建一个自编码器来完成整个通信架构,利用机器学习的非线性拟合特性来适应信道,通过直接训练神经网络来得到全局最优解。
近年来,机器学习被尝试用于通信领域来替换通信系统中的各个子模块并取得了很好的效果。在2006年,多伦多大学教授Geoffrey Hinton首次提出了深度学习的模型以及训练方法。一般的深度学习模型有多层网络构成,每一层又由多个神经元组成,通过基于大量标记与未标记数据整合而成的训练集的有效训练而获取参数配置合理的深度学习模型。
发明内容
本发明的目的是为了提高通信系统对真实信道的适应性并得到一个全局最优的通信系统,为此提供了一种基于深度学习的端到端通信系统建立方法。
本发明的目的是这样实现的:
一种基于深度学习的端到端通信系统建立方法,包括以下步骤:
步骤1、建模信道训练阶段:通过建立自编码器深度神经网络并进行训练,其中中间层加入信道层,信道层尽量模拟真实信道,得到有效训练的端到端通信系统的深度学习模型,将训练完的网络以信道层为节点,之前的为编码层,之后的为译码层;
步骤2、真实信道训练阶段:在真实信道下进行收发数据,利用收发数据对译码层进行单独训练,使译码层对真实信道更具有适应性。
步骤1所述的有效训练的端到端通信系统的深度学习模型是这样得到的:
搭建包含输入层、信道层、多层隐藏层、输出层,且每层由多个代表数据特征的神经元构成深度神经网络并进行训练;编码层加入上采样和成型滤波,上采样点数设置为6,成型滤波器采用根升余弦滤波器,α=0.5,输入信号经上采样后与成型滤波卷积,卷积完的数据保留经上采样而形成的两边的0值作为保护间隔抑制符号干扰;信道层包含高斯白噪声、相位偏移和频率偏移,译码层先经过切片层将保护间隔去除,再加入RTN环节;
训练过程中,生成一定数量的随机数作为网络的输入数据集s和输出标签s’,数据于神经网络中在权重、偏置和激活函数的共同作用下前向传播进而得到最终神经网络输出s’,则第q层神经网络的第j个神经元的输入和输出分别为:
其中,J(q-1)和J(q)分别代表第q-1和第q层神经网络所包含的神经元个数,uij(q-1)为第q-1层第i个神经元与第q层第j个神经元之间的权重,vj(q-1)为第q层第j个神经元的偏置,f(·)为激活函数;因此得到深度神经网络的总输出:
s'(Q)=f(Q-1)(f(Q-2)(...f(1)(s(1))))
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于哈尔滨工程大学,未经哈尔滨工程大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201910633748.8/2.html,转载请声明来源钻瓜专利网。