[发明专利]一种基于神经网络技术的农业水利调度方法及系统有效
申请号: | 201910686618.0 | 申请日: | 2019-07-29 |
公开(公告)号: | CN110472840B | 公开(公告)日: | 2022-03-22 |
发明(设计)人: | 马创;杨松菱;薛思豪 | 申请(专利权)人: | 重庆邮电大学 |
主分类号: | G06Q10/06 | 分类号: | G06Q10/06;G06Q10/04;G06Q50/02;G06Q50/06;G06N3/00;G06N3/04;G06N3/08 |
代理公司: | 重庆辉腾律师事务所 50215 | 代理人: | 卢胜斌 |
地址: | 400065 重*** | 国省代码: | 重庆;50 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 神经 网络技术 农业 水利 调度 方法 系统 | ||
1.一种基于神经网络技术的农业水利调度方法,其特征在于,所述方法包括以下步骤:
S1、在农业灌溉区设置多个监测传感器,监测当前区域的各类环境数据以及各类作物数据,并对其进行特征提取;
S2、构建BP神经网络模型,输入当前区域的各类环境数据以及各类作物数据,按照设定的初始权值和初始阈值直接预测出当前区域的农业水利的调度数据;
所述各类环境数据包括该区域的近期一个月降水量、年降水量、该区域空气中的温度湿度和二氧化碳浓度、土壤条件、该区域公共水源总量和区域内独立水源的数量分布情况;所述各类作物数据包括农作物类型、播种面积、农作物灌溉方式以及农作物本身的存活状态和水分含量数据;
S3、采用遗传算法的方式,将种群个体对应到提取后的特征,设置进化代数计数器t=0,设置最大进化代数E以及特征种群规模;并随机生成多个特征个体作为初始化的特征种群;
S4、计算出第t代的特征种群中各个特征个体的适应度值;适应度值的计算公式表示为F=1/∑(A1-A2)2;A1表示当前区域的农业水利的真实调度数据,A2表示为BP神经网络模型预测出的当前区域的农业水利的调度数据;
S5、将不满足收敛条件下的特征个体采用选择、交叉、变异处理,令t=t+1;根据交叉变异自适应概率进行抽样,对满足稳定条件的特征个体采用粒子群算法进行处理,否则重新进行选择、交叉、变异处理;经粒子群算法处理后,返回步骤S4,直至其满足收敛条件;在满足收敛条件下,则将具有最大适应度的特征个体作为最优解输出;
S51、判断特征的适应度值是否满足收敛条件,若满足收敛条件,则以进化过程中得到的具有最大适应度的特征个体作为最优解输出,并进行步骤S6,否则进行步骤S52;
S52、对不满足收敛条件的特征依次进行选择、交叉和变异操作,从而生成下一代的特征种群,令t=t+1;
步骤S52中对个体进行选择、交叉、变异操作包括:
以交叉概率Pc对特征个体进行交叉操作,交叉概率Pc表示为:
以变异概率Pm对特征个体进行变异操作,变异概率Pm表示为:
其中,Pc max为交叉概率的最大值;Pc min为交叉概率的最小值;E为最大进化代数;Ei为当前进化代数;A为经验常数;f'为进行交叉操作的两个父辈中适应度值较大的一个;f'avg为种群特征适应度的平均值;fmax为种群特征适应度最大值;Pm max为变异概率的最大值;Pm min为变异概率的最小值;
S53、根据自适应函数生成抽样概率,并对新生成的特征种群中的特征个体进行抽样;
S54、判断抽样的特征个体是否稳定,若稳定,则对抽样后的特征个体进行粒子群优化调整,形成粒子特征种群,返回步骤S4;否则返回步骤S53,继续对特征种群中的特征个体进行抽样;
步骤S54中的进行粒子群优化调整包括:
S541、根据遗传算法中的交叉变异自适应概率抽样出来的新个体输出是否稳定,设立稳定条件,则进行下一步粒子特征种群优化操作;
S542、进行粒子特征种群优化操作,对步骤S541中满足稳定条件的输出数据进行粒子特征种群初始化,包括粒子特征种群的初始位置和初始速度,设置迭代次数t0=0、最大迭代次数T0、学习因子c1和c2以及惯性因子ω;
S543、根据粒子群适应度函数评估每个特征粒子的适应度;
S544、对每个特征粒子,将其适应度值与其经过的最好位置pbestk作比较,则将两者中较好的作为当前的最好位置;
S545、对每个特征粒子,将其适应度值与其全局经过的最好位置gbestk作比较则将两者中较好的作为全局的最好位置;
S546、根据以下公式分别更新特征粒子的速度和位置,vk+1=ωvk+c1(pbestk-xk)+c2(gbestk-xk);xk+1=xk+vk+1;
S547、如果达到终止条件t0=T0,则继续执行下一步,否则跳转回S543;
S548、将上一步中满足终止条件的最优解形成下一代粒子特征种群,并令t0=t0+1,返回步骤S4;
其中,vk是特征粒子的速度向量,xk是当前特征粒子的位置;pbestk表示特征粒子本身找到的最优解的位置;gbestk表示整个特征种群中目前找到的最优解的位置;T0表示粒子特征种群的代数;
S6、将最优解作为该BP神经网络模型优化后的初始权值和优化后的初始阈值,从而优化BP神经网络模型;
S7、输入当前区域的农业水利的真实调度数据;对优化后的BP神经网络模型进行训练,计算出优化模型预测出的当前区域的农业水利的调度数据与该区域的真实调度数据之间的误差;判断误差是否满足设定的误差范围,若误差满足设定的误差范围,则完成训练;否则更新权值以及阈值后继续训练;
S8、输入待预测区域的各类环境数据以及各类作物数据,经过步骤S7完成训练后的BP神经网络模型,输出预测后的待预测区域的农业水利的调度数据;按照该调度数据进行调动,实现农业水利资源的调度优化和配置。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于重庆邮电大学,未经重庆邮电大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201910686618.0/1.html,转载请声明来源钻瓜专利网。
- 同类专利
- 专利分类
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理