[发明专利]一种基于数据挖掘的飞行数据异常识别模型构建方法在审
申请号: | 201910687431.2 | 申请日: | 2019-07-29 |
公开(公告)号: | CN110427419A | 公开(公告)日: | 2019-11-08 |
发明(设计)人: | 王林;王骁 | 申请(专利权)人: | 陕西千山航空电子有限责任公司 |
主分类号: | G06F16/26 | 分类号: | G06F16/26;G06K9/62 |
代理公司: | 北京清大紫荆知识产权代理有限公司 11718 | 代理人: | 娄华 |
地址: | 710065 陕西省西*** | 国省代码: | 陕西;61 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 飞行数据 异常识别 样本数据 模型构建 数据特征 构建 预处理 读取 模型识别数据 数据特征提取 数据挖掘算法 测试样本 飞机参数 故障数据 航空电子 健康诊断 模型训练 输出结果 数据清洗 数据挖掘 应用提供 大数据 数据源 降维 筛选 飞机 非法 | ||
本发明属于航空电子技术领域,本发明提出一种飞行数据异常识别模型构建方法,包括以下步骤:读取飞行数据作为样本数据,将样本数据进行预处理,对样本数据中可能存在的非法值、空值等进行筛选和处理,完成数据清洗;采用降维的方法完成数据特征提取;根据提取的数据特征和数据挖掘算法,完成模型训练,形成异常识别模型,能够区分数据特征,即是否存在异常;选取新的数据源作为测试样本,利用训练好的模型识别数据状态,输出结果。本发明解决当前在构建飞机异常识别模型时缺少故障数据和具体的飞机参数知识,仅通过数据就能构建飞行数据异常识别模型,为后续利用海量飞行数据开展健康诊断和大数据应用提供一种思路。
技术领域
本发明属于航空电子技术领域,涉及一种基于数据挖掘的飞行数据异常识别模型构建方法。
背景技术
数据管理系统记录了飞机整个飞行过程的全机数据,随着航空电子技术的发展,记录的参数个数、参数信息量急剧上升,现有的飞行数据判读手段效率低下,如何能够准确识别异常飞行数据来有效保证飞行安全、预防飞行事故发生,已成为关注的焦点。
发明内容
发明目的:本发明的目的是提出一种飞行数据异常识别模型构建方法,解决当前在构建飞机异常识别模型时因缺少故障数据和具体的飞机参数知识而导致的判读效率低下的问题。
技术方案:一种飞行数据异常识别模型构建方法,构建方法如下:
步骤(1),读取飞行数据作为样本数据,将样本数据进行预处理,对样本数据中可能存在的非法值、空值等进行筛选和处理,完成数据清洗;
步骤(2),采用降维的方法完成数据特征提取;
步骤(3),根据提取的数据特征和数据挖掘算法,完成模型训练,形成异常识别模型,能够区分数据特征,即是否存在异常;
步骤(4),选取新的数据源作为测试样本,利用步骤(3)训练好的模型识别数据状态,输出结果。
所述步骤(1),在对样本数据进行预处理时,首先通过飞行阶段划分数据,不同的飞行阶段数据特征不同。
所述步骤(2),在进行数据特征提取时,针对不同类型的飞行数据采用不同的特征提取方式;飞行数据分为连续量和离散量,对于连续量,将数据划分为时间为t秒的时间片,对所有t秒的时间片内进行特征提取,统计数据特征;对于离散量,采用0和1两个特征量进行划分并提取特征。
优选地,在完成模型训练并形成异常识别模型后,根据不断增加的测试样本数据、设置模型参数不断优化异常识别模型,能够更加准确识别异常飞行数据。
有益效果:本发明基于数据挖掘的方式构建飞行数据异常识别模型,能够针对海量历史飞行数据自动识别异常飞行数据;本发明是完全通过数据去建立异常识别模型,不依赖具体的先验知识(具体故障逻辑和专家知识);本发明异常模型的构建相比其他数据挖掘模型,不需要提前标签数据(即训练数据分为正常标签和异常标签),只需要认为是一类数据去构建模型。
附图说明
图1为本发明飞行数据异常识别模型构建流程图。
具体实施方式
本发明实施过程以飞行数据工程值参数作为数据源,首先需将多架次的飞行数据文件分别保存为CSV格式,CSV的存储格式:行表示时间信息,列是具体的参数和对应数值。下面结合附图对本发明做进一步详细说明,请参阅图1。整个实施过程包括以下步骤:
步骤(1),读取飞行数据作为样本数据,将样本数据进行预处理,对样本数据中可能存在的非法值、空值等进行筛选和处理,完成数据清洗;
步骤(2),采用降维的方法完成样本数据特征提取;
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于陕西千山航空电子有限责任公司,未经陕西千山航空电子有限责任公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201910687431.2/2.html,转载请声明来源钻瓜专利网。