[发明专利]基于RBF神经网络的变压器绕组及铁心振动信号分离方法在审

专利信息
申请号: 201910697274.3 申请日: 2019-07-30
公开(公告)号: CN110532885A 公开(公告)日: 2019-12-03
发明(设计)人: 汲胜昌;王一林;张凡;师愉航 申请(专利权)人: 西安交通大学
主分类号: G06K9/00 分类号: G06K9/00;G06K9/62;G06N3/04;G06N3/08;G06T5/10;G01H17/00
代理公司: 61200 西安通大专利代理有限责任公司 代理人: 李鹏威<国际申请>=<国际公布>=<进入
地址: 710049 *** 国省代码: 陕西;61
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 振动信号 变压器绕组 铁心 径向基神经网络 变压器铁心 混合信号 铁心振动信号 采集变压器 分离变压器 振动特性 输出层 输入层 变压器 保留
【说明书】:

发明公开了一种基于RBF神经网络的变压器绕组及铁心振动信号分离方法,包括以下步骤:在变压器不同工况下,采集变压器绕组的振动信号、变压器铁心的振动信号以及变压器绕组与铁心的混合信号,将变压器绕组与铁心的混合信号作为径向基神经网络的输入层,将变压器绕组的振动信号及变压器铁心的振动信号作为径向基神经网络的输出层,对径向基神经网络进行训练,然后利用训练后的径向基神经网络对待分离的变压器绕组与铁心的混合信号进行分离,得分离后的变压器绕组的振动信号及变压器铁心的振动信号,该方法能够准确的分离变压器绕组及铁心的振动信号,以准确保留绕组及铁心的振动特性。

技术领域

本发明属于变压器振动信号的分离技术领域,涉及一种基于RBF神经网络的变压器绕组及铁心振动信号分离方法。

背景技术

变压器是电力系统最重要的设备之一,其安全运行已与国家经济发展紧密的联系了起来。如果变压器出现故障,将导致大面积停电,这样不仅影响了工厂的生产,也影响了民众的生活。因此,为了及时发现变压器的事故隐患,避免突发事故,提高变压器运行的可靠性,开展变压器故障诊断方法的研究具有十分重要的意义。

综合目前国内外关于变压器振动信号分离的研究现状来看,以独立分量分析算法(ICA)为代表主流的盲源分离算法对源信号的独立性要求较高,但由于铁心振动信号与绕组振动信号在振幅、频谱中相似度很高,混合矩阵的可靠性存疑,因此主流的盲源分离等盲源分离算法分离出的信号并不能准确地保留绕组及铁心的振动特性。

发明内容

本发明的目的在于克服上述现有技术的缺点,提供了一种基于RBF神经网络的变压器绕组及铁心振动信号分离方法,该方法能够准确的分离变压器绕组及铁心的振动信号,以准确保留绕组及铁心的振动特性。

为达到上述目的,本发明所述的基于RBF神经网络的变压器绕组及铁心振动信号分离方法包括以下步骤:

在变压器不同工况下,采集变压器绕组的振动信号、变压器铁心的振动信号以及变压器绕组与铁心的混合信号,将变压器绕组与铁心的混合信号作为径向基神经网络的输入层,将变压器绕组的振动信号及变压器铁心的振动信号作为径向基神经网络的输出层,对径向基神经网络进行训练,然后利用训练后的径向基神经网络对待分离的变压器绕组与铁心的混合信号进行分离,得分离后的变压器绕组的振动信号及变压器铁心的振动信号。

基于压电式振动加速度传感器的变压器测振系统采集变压器油箱表面的振动信号作为变压器绕组与铁心的混合信号。

训练后的径向基神经网络包括用于分离变压器铁心振动信号的铁心神经网络及用于分离变压器绕组振动信号的绕组神经网络。

采集变压器铁心的时域振动信号,再对变压器铁心的时域振动信号进行傅里叶变换,得变压器铁心的频域振动信号,然后将变压器铁心的频域振动信号输入到径向基神经网络的输出层,将变压器绕组与铁心的混合信号输入到径向基神经网络的输入层,对径向基神经网络进行训练,得铁心神经网络。

采集变压器绕组的时域振动信号,再对变压器绕组的时域振动信号进行傅里叶变换,得变压器绕组的频域振动信号,然后将变压器绕组的频域振动信号输入到径向基神经网络的输出层,将变压器绕组与铁心的混合信号输入到径向基神经网络的输入层,对径向基神经网络进行训练,得绕组神经网络。

本发明具有以下有益效果:

本发明所述的基于RBF神经网络的变压器绕组及铁心振动信号分离方法在具体操作时,将不同工况下采集的变压器绕组与铁心的混合信号作为径向基神经网络的输入层,将不同工况下采集得到的变压器绕组的振动信号及变压器铁心的振动信号作为径向基神经网络的输出层,对径向基神经网络进行训练,通过训练的径向基神经网络对采集的混合信号进行分离,以实现分离变压器绕组及铁心的振动信号,并准确保留绕组及铁心的振动特性。

附图说明

图1为本发明的流程图;

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安交通大学,未经西安交通大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201910697274.3/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top