[发明专利]一种基于WPD-FOA-LSSVM双模型的MMC故障定位方法有效
申请号: | 201910729935.6 | 申请日: | 2019-08-08 |
公开(公告)号: | CN110456217B | 公开(公告)日: | 2021-06-01 |
发明(设计)人: | 杨桢;马子莹;李鑫;邱彬;苏小平;刘宏志 | 申请(专利权)人: | 辽宁工程技术大学 |
主分类号: | G01R31/52 | 分类号: | G01R31/52;G01R31/62;G06K9/62;G06N3/00 |
代理公司: | 沈阳东大知识产权代理有限公司 21109 | 代理人: | 李在川 |
地址: | 123000 辽*** | 国省代码: | 辽宁;21 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 wpd foa lssvm 双模 mmc 故障 定位 方法 | ||
1.一种基于WPD-FOA-LSSVM双模型的MMC故障定位方法,其特征在于包括如下步骤:
步骤1:对于具有6个桥臂、6×n个子模块的三相n+1电平换流器,采集N组故障对应的各子模块电容电压,将采样得到的全体子模块电容电压组成集合S;
步骤2:将集合S随机分解为训练样本集Strain和测试样本集Stest,其中训练样本个数为Z1,测试样本个数为Z2;
步骤3:采用小波包分解方法对训练样本集Strain和测试样本集Stest中的样本数据进行分解,将6×n个子模块电容电压节点能量组成故障特征向量T1,全体训练样本故障特征向量的集合为Ttrain1,全体测试样本故障特征向量的集合为Ttest1;提取故障IGBT所在桥臂的n个子模块的归一化节点能量,组成故障特征向量T2,全体训练样本故障特征向量的集合为Ttrain2,全体测试样本故障特征向量的集合为Ttest2;
步骤4:根据故障IGBT所在的桥臂以及所在子模块内部的位置,给故障特征向量设置标签L1;根据故障IGBT所在子模块的位置,给故障特征向量设置标签L2;
步骤5:采用果蝇算法优化参数,采用one-against-all的方式搭建WPD-FOA-LSSVM故障定位模型;
步骤6:采用不同的特征向量集合Ttrain1和Ttrain2,对步骤5搭建的模型进行训练,得到训练好的模型M1和M2;
步骤7:将测试集提取的特征Ttest1输入到训练好的模型M1中,得到故障IGBT在MMC中所在桥臂以及所在子模块SM内部的位置;将测试集提取的特征Ttest2输入到训练好的模型M2中,对故障子模块进行定位。
2.根据权利要求1所述的一种基于WPD-FOA-LSSVM双模型的MMC故障定位方法,其特征在于:所述步骤1中将采样得到的全体子模块电容电压组成集合S记为:
S=[Uc(l,m)|l=1…N,m=1…6×n] (1)
其中,Uc(l,m)代表第l组故障对应的第m个子模块电容电压。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于辽宁工程技术大学,未经辽宁工程技术大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201910729935.6/1.html,转载请声明来源钻瓜专利网。