[发明专利]一种基于视觉显著性的水面物体检测和分类的方法在审

专利信息
申请号: 201910783704.3 申请日: 2019-08-23
公开(公告)号: CN112417931A 公开(公告)日: 2021-02-26
发明(设计)人: 余志宏;周清楷;李庆武;徐畅;周亚琴;刘凯祥 申请(专利权)人: 河海大学常州校区
主分类号: G06K9/00 分类号: G06K9/00;G06K9/32;G06K9/34;G06K9/46;G06K9/62;G06T5/00
代理公司: 南京纵横知识产权代理有限公司 32224 代理人: 许婉静
地址: 213022 *** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 视觉 显著 水面 物体 检测 分类 方法
【权利要求书】:

1.一种基于视觉显著性的水面物体检测和分类的方法,其特征在于,包括以下步骤:

S1,获取水面原始图像,并对所述原始图像进行去雾的预处理;

S2,对预处理后的图像进行纹理分析和河岸线检测,并根据分析检测结果进行河道区域分割;

S3,利用基于图论的视觉显著性模型计算图像的显著图;

S4,根据边缘直方图描述符计算显著图中显著性区域的特征向量,并通过基于决策树的多分类支持向量机算法对特征进行识别;

S5,采用基于小波变换的图像分割算法分割水面物体;

S6,统计数据,输出结果。

2.根据权利要求1所述的一种基于视觉显著性的水面物体检测和分类的方法,其特征在于,步骤S1中,对所述原始图像进行去雾处理的方法需要采用大气中光学成像模型,所述光学成像模型为:

I(x)=J(x)t(x)+A(1-t(x))

式中,I(x)为原始图像,J(x)为去雾后的图像,A为全局背景光,t(x)为大气透射率;对原始图像进行去雾处理的具体方法为:

将原始图像作为引导图像I,预估透射率图

式中,Ic、Ac分别是I、A的三个颜色通道R、G、B;Ω(x)是以像素点x为中心的局部区域块;取w=0.92,Ac=255;则去雾后的图像为:

式中,t0为大气透射率阈值,取t0=0.10;

考虑到在暗色先验原理可能不成立的情况下,增加参数Q作为限差;当|I(x)-A|<Q,说明背景光与物体本身颜色相差不大,将其认为是明亮区域;当|I(x)-A|>Q,说明背景光与物体本身颜色相差比较大,认为此区域符合暗原色先验原理,最终的去雾图像为:

式中,Q的范围取50~100。

3.根据权利要求1所述的一种基于视觉显著性的水面物体检测和分类的方法,其特征在于,步骤S2中,进行河道区域分割的方法为:采用灰度共生矩阵分析法对去雾后的图像进行纹理分析,找出河道的大致位置;再利用结构化随机森林算法和霍夫直线拟合算法找到河岸线,并根据河岸线进行河道区域分割,具体方法为:

将去雾后图像的灰度级压缩为16级,计算灰度共生矩阵P,利用灰度共生矩阵P分别求出角二阶矩ASM、对比度con、相关性cor和熵Entropy四个主要特征值,具体公式如下:

式中,i,j分别为灰度共生矩阵P的行号和列号;

由得到的四个特征值计算出特征向量,并根据特征向量来判断图像的纹理复杂度,判断纹理复杂度的具体依据为:ASM的值越小、con的值越大、cor的值越小、Entropy的值越大的特征向量表示的纹理复杂度越高;反之,表示的纹理复杂度越低;纹理复杂度高的区域是地面,反之为河道,以此来确定河道区域的大致位置;

再将去雾后图像二值化,利用结构化随机森林算法对边缘进行检测,再通过霍夫直线拟合算法拟合出大致的河岸线,再根据河岸线的位置,将图像进行分割,得到河道图像。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于河海大学常州校区,未经河海大学常州校区许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201910783704.3/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top