[发明专利]一种基于卷积神经网络识别绿通车车辆轴型的方法有效
申请号: | 201910803615.0 | 申请日: | 2019-08-28 |
公开(公告)号: | CN110532946B | 公开(公告)日: | 2022-04-26 |
发明(设计)人: | 靳引利;张书颖;王萍;孙铸;韩万水;王军;杨干;王赛赛;卓叶迪 | 申请(专利权)人: | 长安大学 |
主分类号: | G06V20/54 | 分类号: | G06V20/54;G06V10/25;G06V10/26;G06V10/774;G06V10/764;G06V10/82;G06K9/62;G06N3/04;G06N3/08 |
代理公司: | 西安通大专利代理有限责任公司 61200 | 代理人: | 贺小停 |
地址: | 710064*** | 国省代码: | 陕西;61 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 卷积 神经网络 识别 通车 车辆 方法 | ||
一种基于卷积神经网络识别绿通车车辆轴型的方法,包括以下步骤:步骤1,获取绿通车图像;步骤2,制定绿通车图像有效性判定标准;步骤3,采用数据增强的方法增加训练样本的数量;步骤4,数据增强后,使用目标检测算法YOLOv2框架进行整轴检测;步骤5,根据车辆轴组类型和轮组类型将车辆轴型进行分类;步骤6,分别使用AlexNet、VGG‑16、ResNet‑152三种卷积神经网络在训练集上对车轴类型分类进行训练;步骤7,对需要识别的绿通车车辆轴型进行判定。本发明以实现绿通车车辆轴型准确识别为目标,将目标检测算法、非均衡数据集处理等与卷积神经网络模型相结合,使用判定标准挑选的图像可作为后续分类识别实验卷积神经网络模型的训练样本,避免训练样本水平过差问题。
技术领域
本发明属于车辆识别技术领域,特别涉及一种基于卷积神经网络识别绿通车车辆轴型的方法。
背景技术
图像分类算法按时间划分为传统的分类算法包括:K-邻近算法、SVM支持向量机、贝叶斯算法等。随着计算机计算能力的极大提升,深度学习算法逐渐成为目前的主流应用。人工神经网络模拟大脑中神经元的作用原理,最终得到一个能够自主学习的网络模型。卷积神经网络模型主要涉及AlexNet网络模型、VGGNet网络模型、ResNet网络模型,。基于传统图像处理的目标检测算法在数据处理能力及识别率等方面的能力不足已很难满足实际应用需要的时效、性能、速度和智能化等各方面要求。而对样本量小且分布不均的非均衡数据会导致训练出的网络模型过拟合、泛化能力不足,对此,可通过对数据集进行重采样的方法进行处理,数据重采样一般分为欠采样和过采样。
KNN算法存在巨大的计算量,消耗更多内存。对绿通车图像分类,不仅其数据量大且在多分类情况中存在数据非均衡问题。在对非均衡数据分类时,KNN算法有可能产生计算的待分类图像样本的k个邻居中大容量样本占多数的问题,最终导致分类错误。SVM算法通过核函数映射到高维特征空间实现线性可分,因此其泛化能力很大程度上取决于所选核函数。此外,SVM针对多分类问题效果不佳且仅局限于小集群样本,对于绿通车图像数据库中庞大的样本且后续需进行多分类,分类效率低下,寻求合适的核函数相对困难;其次,由于人工检查拍摄不规范,图像数据质量较差,目标特征不清晰,所以使用SVM算法在设计提取特征的模型时较为困难,且所设计特征的优劣将严重影响后续的分类准确率。朴素贝叶斯算法有一项基本的限制在于需要各个数据间的关系必须独立,而绿通车图像分类中很难实现这项基本假设,因此朴素贝叶斯的算法效果并不理想。而数据重采样中的欠采样方法也有缺陷,随机选取的被剔除的数据有可能包含该类的关键特征信息,分类器在学习时有可能只学习到多数类样本的部分信息,影响分类器对多数类的分类性能。而且对于卷积神经网络,训练数据量越大,网络性能越突出。
国内外学者在车辆分类识别技术研究方面不断突破但仍有不足。首先,大多数研究没有建立对特定场景下车辆的分类标准,都是依靠国家制定的分类标准文件,使得应用场景有巨大的局限性。第二,在研究车辆分类算法的文章中,较少的学者使用多种方法融合提高分类算法的准确率。
发明内容
本发明的目的在于提供一种基于卷积神经网络识别绿通车车辆轴型的方法,以解决上述问题。
为实现上述目的,本发明采用以下技术方案:
一种基于卷积神经网络识别绿通车车辆轴型的方法,包括以下步骤:
步骤1,获取绿通车图像;
步骤2,通过图像质量评价方法中的相对评价法制定绿通车图像有效性判定标准,通过绿通车图像有效性判定标准挑选的图像作为后续分类识别实验卷积神经网络模型的训练样本;
步骤3,采用人工合成少数类样本对图像分类中的非均衡数据进行训练,采用数据增强的方法增加训练样本的数量;
步骤4,数据增强后,使用目标检测算法YOLOv2框架进行整轴检测,将车辆的轴组作为整体目标进行检测识别;
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于长安大学,未经长安大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201910803615.0/2.html,转载请声明来源钻瓜专利网。