[发明专利]基于旋转不变LBP-SURF特征相似度的图像拼接评价方法有效
申请号: | 201910810138.0 | 申请日: | 2019-08-29 |
公开(公告)号: | CN110533652B | 公开(公告)日: | 2022-12-06 |
发明(设计)人: | 黄鹤;平振东;郭璐;茹锋;王会峰;许哲;黄莺;汪贵平;惠晓滨;李战一 | 申请(专利权)人: | 西安汇智信息科技有限公司 |
主分类号: | G06T7/00 | 分类号: | G06T7/00;G06T3/40;G06V10/74 |
代理公司: | 西安通大专利代理有限责任公司 61200 | 代理人: | 朱海临 |
地址: | 710075 陕西省西安市高新*** | 国省代码: | 陕西;61 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 旋转 不变 lbp surf 特征 相似 图像 拼接 评价 方法 | ||
1.基于旋转不变LBP-SURF特征相似度的图像拼接评价方法,其特征在于,包括以下步骤:
步骤1:读入拼接前的两幅图像与拼接后的图像,分别记为矩阵I1、I2和I3;
步骤2:根据步骤1获取的矩阵I1、I2和I3分别构建尺度空间;
步骤3:使用构建Hessian矩阵的方法对步骤2构建的尺度空间进行处理;
步骤4:利用步骤3获取的处理后的尺度空间进行特征点定位;
步骤5:对步骤4定位的特征点进行主方向分配;
步骤6:沿着步骤5确立的特征点主方向生成特征点描述子;
步骤7:利用旋转不变LBP算法对步骤1获取的矩阵I1、I2和I3提取旋转不变LBP特征,并将其合并到步骤6的特征点描述子,得到合并后的特征点描述子;
步骤8:利用步骤7得到的合并后的特征点描述子进行双向匹配得到粗匹配的特征点,即匹配点对;
步骤9:随机从步骤8中确立的匹配点对中随机抽出至少四对样本数据,且抽取的样本之间不共线,计算出变换矩阵H;
步骤10:利用步骤9获得的变换矩阵H将一幅图像中的匹配点投影到另一幅图像中,计算匹配点之间的欧氏距离,若欧氏距离小于距离阈值则将匹配点加入内点集,否则该匹配点不加入内点集;计算完所有匹配点对之间的欧式距离后,比较此次投影计算得到的内点数量与上一次计算的内点数量,若大于则将此次得到的内点集保存,删除之前计算得到的内点集,小于等于时本次得到的内点集不保存;重复步骤9、步骤10达到设定次数;
步骤11:利用步骤10获得的内点集即最终匹配点对图像拼接质量进行评价。
2.根据权利要求1所述的基于旋转不变LBP-SURF特征相似度的图像拼接评价方法,其特征在于,步骤2中构建的尺度空间由若干组图像构成,每一组中包含若干层,不同组间图像的尺寸一致,但不同组间使用的盒式滤波器的模板尺寸逐渐增大,模板的尺寸计算公式如下:
FilterSize=3×(2octave×interval+1)
其中,Filter Size为滤波器的模板尺寸,octave为组数,interval为层数;
同一组间不同层间使用相同模板尺寸的滤波器,但是滤波器的模糊系数逐渐增大,其计算公式如下:
σ=(2octave+1(interval+1)+1)/3
其中σ为滤波器的模糊系数。
3.根据权利要求2所述的基于旋转不变LBP-SURF特征相似度的图像拼接评价方法,其特征在于,步骤3对步骤2中每一组的每一层图像使用Hession矩阵进行处理,通过特定核间的卷积计算二阶偏导数,进而计算出Hessian矩阵的三个矩阵元素Lxx,Lxy,Lyy,从而计算出Hessian矩阵,其公式为:
其中,σ是标准差,Lxx为x方向的二阶偏导,Lxy为先对x方向求二阶偏导,再对y方向求二阶偏导,Lyy为对y方向求二阶偏导;
由于使用的是盒式滤波器,所以Lxx简化为Dxx、Lxy简化为Dxy、Lyy简化为Dyy,每一个像素点得出Hession矩阵,将Hession矩阵的行列式的值作为该点在经过Hession矩阵处理后的值,其公式如下:
det(Hession)=Dxx*Dyy-(0.9*Dxy)2
其中,det(Hession)为Hession矩阵行列式的值,Dxx、Dxy、Dyy分别为Dxx、Dxy、Dyy经盒式滤波器简化而来。
4.根据权利要求3所述的基于旋转不变LBP-SURF特征相似度的图像拼接评价方法,其特征在于,步骤4中特征点定位具体为:在经过步骤3处理后的每一组图像中选取相邻的三层矩阵,对于中间层的每一个值都作为待比较的点,在空间中选取该点周围的26个点进行比较大小,若该点大于其他26个点,则该点为初步特征点,否则跳过该点,同时设置阈值a,若初步特征点的值小于阈值a的值,则将该点剔除,否则将该点保留,筛选出最终的稳定的特征点。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安汇智信息科技有限公司,未经西安汇智信息科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201910810138.0/1.html,转载请声明来源钻瓜专利网。
- 上一篇:一种图像处理方法及装置
- 下一篇:高压电气设备缺陷检测方法、装置及终端设备