[发明专利]一种基于协方差域零化的均匀线阵波达方向估计方法有效
申请号: | 201910851813.4 | 申请日: | 2019-09-10 |
公开(公告)号: | CN110749855B | 公开(公告)日: | 2021-08-10 |
发明(设计)人: | 潘玉剑;罗国清;姚敏;张晓红;代喜旺 | 申请(专利权)人: | 杭州电子科技大学 |
主分类号: | G01S3/14 | 分类号: | G01S3/14 |
代理公司: | 杭州君度专利代理事务所(特殊普通合伙) 33240 | 代理人: | 杨舟涛 |
地址: | 310018 浙*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 协方差 域零化 均匀 线阵波达 方向 估计 方法 | ||
1.一种基于协方差域零化的均匀线阵波达方向估计方法,其特征在于,包括以下步骤:
(S1):K个远场窄带不相关信号入射到M阵元均匀线阵,K<M,对各阵元输出进行匹配滤波得到N个快拍的阵列数据向量
(S2):构造加权索引矩阵
所述步骤(S2)中构造加权索引矩阵方法为:设置包含M个元素的列向量p,使p[m]=m,其中p[m]为p的第m个元素,其余表示类似;令其中(·)T表示转置,vec(·)表示将矩阵的各列依次堆叠形成向量,eM表示包含M个元素的全1列向量,其余表示类似;设置包含2M-1个元素的列向量p′,使p′[m]=m-M,令再将C中的非0元素改为0,0元素改为1,得到矩阵C′;最后将C′中的每行分别除以对应行的非零元素的个数得到加权索引矩阵B;
(S3):构造协方差域的数据向量y及对应的阵列残差的协方差矩阵Σ;
所述步骤(S3)中构造协方差域的数据向量y及对应的阵列残差的协方差矩阵Σ的方法为:计算阵列协方差矩阵的估计值并计算去噪后的向量化阵列协方差矩阵的估计值,得到其中(·)H表示共轭转置,IM为有M个对角元的单位矩阵,为阵列噪声方差的估计值,通过取的M-K个最小特征值的均值得到;则协方差域的数据向量阵列残差的协方差矩阵其中表示Kronecker积;
(S4):对协方差域的数据向量y进行基于常规波束形成法的波达方向估计,并以此对零化滤波器系数进行初估计;
所述步骤(S4)中由基于常规波束形成法的波达方向估计结果,对零化滤波器系数进行初估计的方法为:假设由常规波束形成法得到了K′个波达方向,设为再定义函数对该函数进行逆Z变换即得到零化滤波器系数h的初估计h(0);其中d为均匀线阵的阵元间距,λ为信号波长;
(S5):根据高斯牛顿算法迭代求解阵列残差ε和零化滤波器系数h;
所述步骤(S5)中迭代求解阵列残差ε和零化滤波器系数h的方法为:迭代之前需要进行初始化,阵列残差ε用零向量初始化,零化滤波器系数用步骤(S4)中的初估计h(0)初始化;迭代过程中ε与h的更新公式为:ε(i+1)=ε(i)+Δε,h(i+1)=h(i)+Δh,上标i表示迭代次数;其中Δh通过解方程组
得到,Δε通过
得到;其中,J1=-T(h(i)),J2=L(y)-L(ε(i)),T(·)与L(·)分别为两种Toeplitz算子;有
λ2为辅助标量;迭代需设置最大迭代次数,每迭代一次检查是否达到最大迭代次数或者h是否收敛,若满足其中一个条件则停止迭代,若都不满足则继续迭代;
(S6):根据迭代求解得到的零化滤波器系数h计算所有信号的波达方向;
所述步骤(S6)中根据迭代求解得到的零化滤波器系数h计算所有信号的波达方向的方法为:以h中元素为系数构造线性方程h[1]αK+h[2]αK-1+...+h[K]α+h[K+1]=0,求其K个根,为则K个信号的波达方向估计为其中angle(·)表示求复数的幅角。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于杭州电子科技大学,未经杭州电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201910851813.4/1.html,转载请声明来源钻瓜专利网。