[发明专利]一种语义匹配的方法以及相关装置有效
申请号: | 201910871549.0 | 申请日: | 2019-09-16 |
公开(公告)号: | CN110633360B | 公开(公告)日: | 2023-06-20 |
发明(设计)人: | 陈华栋;徐广庆;陈健 | 申请(专利权)人: | 腾讯科技(上海)有限公司 |
主分类号: | G06F40/30 | 分类号: | G06F40/30;G06F16/332;G06F40/289;G06N3/045;G06N3/08 |
代理公司: | 深圳市深佳知识产权代理事务所(普通合伙) 44285 | 代理人: | 吴磊 |
地址: | 201200 上海*** | 国省代码: | 上海;31 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 语义 匹配 方法 以及 相关 装置 | ||
本申请公开了一种语义匹配的方法以及相关装置,通过融合了不同粒度的语义表达信息,提高句子语义匹配的准确性;具体包括:基于第一粒度分割待检测语句对,以获取第一序列;将第一序列转化为向量表示并输入第一深度神经网络,以得到初始向量;基于第二粒度分割第一序列,以获取第二序列;然后根据注意力机制对初始向量进行计算,以得到第一外部向量和第一内部向量;将初始向量、第一外部向量和第一内部向量输入第二深度神经网络进行学习,以得到待检测语句对的相似度,并得到语义匹配的结果。
技术领域
本申请涉及计算机技术领域,尤其涉及一种语义匹配的方法以及相关装置。
背景技术
随着人工智能技术的发展,越来越多的智能设备出现在人们的生活中,特别是机器人相关的设备已经出现在了日常的服务工作中,在实际场景中客服机器人收到用户提问时,可以识别用户说出的语句,然后通过语义匹配在知识库的问答对中寻找最相似的问题来找到对应问题的答案。
一般,对于语义匹配的过程是基于句子的单个粒度信息学习句子语义表达,并通过神经网络模型得到句子的语义匹配概率。
但是,仅基于单个句子粒度学习句子语义,例如词粒度表示或者字粒度表示,往往需要大量的实验确定哪种粒度是更好的选择,而且在实际使用场景中,存在海量的语义数据需要处理,使得语义匹配的过程无法正常的运行,进而影响语义匹配的精确度。
发明内容
有鉴于此,本申请第一方面提供一种语义匹配的方法,可应用于静态数据库的系统或程序过程中,具体包括:基于第一粒度分割待检测语句对,以获取第一序列;
将所述第一序列转化为向量表示并输入第一深度神经网络,以得到初始向量;
基于第二粒度分割所述第一序列,以获取第二序列,所述第二粒度的划分单元大小小于所述第一粒度的划分单元大小,所述第二序列中的元素与所述第一序列中的元素具有对应关系;
根据第一预设算法对所述初始向量进行计算,以得到第一外部向量和第一内部向量,所述第一预设算法包括采用所述第二序列中的元素作为分隔点切割所述第一序列,所述第一预设算法基于所述初始向量与所述第二序列中的元素向量的相似性设定,所述第一内部向量基于所述分隔点计算所得,所述第一外部向量基于与所述分隔点相邻的元素计算所得;
将所述初始向量、所述第一外部向量和所述第一内部向量输入第二深度神经网络进行学习,以得到所述待检测语句对的相似度,所述待检测语句对的相似度用于指示语义匹配的结果。
优选的,在本申请一些可能的实现方式中,所述根据第一预设算法对所述初始向量进行计算,以得到第一外部向量和第一内部向量,包括:
根据所述初始向量与所述第二序列中的元素向量的相似性比值分别确定所述第一外部向量的权重信息和所述第一内部向量的权重信息;
将所述第一外部向量的权重信息和所述第一内部向量的权重信息输入所述第一预设算法,以分别计算得到所述第一外部向量和所述第一内部向量。
优选的,在本申请一些可能的实现方式中,所述基于第二粒度分割所述第一序列,以获取第二序列,包括:
确定所述第一序列中的多个元素;
确定所述第二粒度指示的划分单元大小;
根据所述第二粒度指示的划分单元大小对所述第一序列的多个元素进行分割,以获取第二序列。
优选的,在本申请一些可能的实现方式中,所述确定所述第一序列中的多个元素,包括:
获取预设的特征元素集合;
根据所述特征元素集合在所述第一序列中进行遍历,以标记出特征元素;
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于腾讯科技(上海)有限公司,未经腾讯科技(上海)有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201910871549.0/2.html,转载请声明来源钻瓜专利网。
- 上一篇:语句等价性判断方法和装置
- 下一篇:输入控制方法、装置和智能会话服务器