[发明专利]基于多模态优化和集成学习的微震信号识别方法在审
申请号: | 201910976478.0 | 申请日: | 2019-10-15 |
公开(公告)号: | CN110688983A | 公开(公告)日: | 2020-01-14 |
发明(设计)人: | 程健;崔宁;郭一楠;焦博韬;陈晶晶;陈锦 | 申请(专利权)人: | 中国矿业大学 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06K9/62;G06N3/12 |
代理公司: | 32249 南京瑞弘专利商标事务所(普通合伙) | 代理人: | 刘珊珊 |
地址: | 221116 江苏省*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 训练样本集 微震信号 弱分类器 多模态 冲击地压 集成学习 冗余 优化 预警 弱分类器组合 非平衡特性 采样方式 分类结果 分类性能 样本生成 灾害 差异性 非平衡 正确率 分类 采样 微震 小类 去除 抽取 | ||
本发明公开了基于多模态优化和集成学习的微震信号识别方法,实现对微震信号的分类,从而完成对冲击地压灾害更加准确、及时的预警。首先,根据微震训练样本集的非平衡率,确定采样倍率,实现基于SMOTE的小类样本生成;其次,采用放回采样方式,进行多次抽取,得到多个子训练样本集,并在每个子训练样本集上训练多个弱分类器;再次,根据每个子训练样本集上的分类结果,选择分类性能最优的个体作为最终的集成个体;最后,采用多模态优化技术,去除冗余的集成弱分类器个体,选择最优弱分类器组合参与集成。本发明充分考虑微震信号的非平衡特性,利用多模态优化技术对弱分类器个体进行选择,寻找部分具有差异性大的个体参与集成,减少冗余个体对集成学习器性能的影响,提高了微震信号的分类正确率,为冲击地压灾害及时有效预警提供更有力的支持。
技术领域
本发明涉及机器学习与数据挖掘领域,尤其是一种基于多模态优化和集成学习的微震信号识别方法。
背景技术
冲击地压是一种典型的煤矿动力灾害,严重威胁煤矿的高效生产和人员安全。因此,对冲击地压灾害的预警至关重要。冲击地压指在高应力作用下,聚集的能量突然释放,对煤岩体造成冲击,导致人员伤亡、建筑物破坏的现象。微震是采矿活动诱发的微地震,是煤岩介质在矿区应力作用下,聚集的弹性应变能突然释放,造成采掘空间周围岩体破裂的现象。因此,通过对微震信号分类,可以有效识别煤岩体状态,逐渐成为冲击地压预警的一种有效手段
目前,微震信号数据识别的方法主要有时频分析和机器学习方法两类。其中,时频分析能有效分析微震波形频谱特征。常用的时频分析方法包括:傅里叶变换、小波变换、小波包变换和频率切片小波变换,等。文献(曹安业,窦林名,秦玉红,等.高应力区微震监测信号特征分析[J].采矿与安全工程学报,2007,24(2):146-149.)利用傅里叶变换,得到矿山微震信号的幅频特征,为煤矿微震信号的初步辨识提供依据。文献(唐守锋,童敏明,潘玉祥,等.煤岩破裂微震信号的小波特征能谱系数分析法[J].仪器仪表学报,2011,32(7):1521-1527.)分析了微震信号与噪声信号的能量分布特征,提出采用小波能谱系数的方法,提取微震信号的特征信息。文献(赵国彦,邓青林,马举.基于FSWT时频分析的矿山微震信号分析与识别[J].岩土工程学报,2015,37(2):306-312.)采用频率切片小波变换,识别煤矿微震信号。
时频域分析方法虽然可以有效分析煤矿微震信号频谱的特性,但是,由于每个传感器产生的数据量规模巨大,所以现场实时应用存在一定难度。因此,结合机器学习和计算机技术,实现大规模微震数据处理成为微震数据分析的一种新兴有效方法。文献(朱权洁,姜福兴,尹永明,等.基于小波分形特征与模式识别的矿山微震波形识别研究[J].岩土工程学报,2012,34(11):2036-2042.)将小波包与分形相结合,提取微震信号特征,并采用支持向量机实现微震信号分类。文献(Vallejos J A,Mckinnon S D.Logistic regression andneural network classification of seismic records[J].Intemational Journal ofRock Mechanics&Mining Sciences,2013,62(9):86-95.)应用逻辑回归和人工神经网络,对微震信号和爆炸信号实现分类。文献(Dong L,Wesseloo J,Potvin Y,etal.Discrimination of Mine Seismic Events and Blasts Using the FisherClassifier,Naive Bayesian Classifier and Logistic Regression[J].RockMechanics and Rock Engineering,2016,49(1):183-211.)采用Fisher分类器、朴素贝叶斯分类器和逻辑回归,分析矿山微震和爆炸事件发生的可能性。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国矿业大学,未经中国矿业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201910976478.0/2.html,转载请声明来源钻瓜专利网。