[发明专利]一种周界入侵事件的识别方法与系统有效

专利信息
申请号: 201911005085.1 申请日: 2019-10-22
公开(公告)号: CN110852187B 公开(公告)日: 2023-04-07
发明(设计)人: 陈沛超;游赐天;丁攀峰 申请(专利权)人: 华侨大学
主分类号: G06F18/10 分类号: G06F18/10;G06F18/2131;G06N3/0464;G06N3/08;G08B13/186
代理公司: 厦门市首创君合专利事务所有限公司 35204 代理人: 张松亭;杨锴
地址: 362000 福建省*** 国省代码: 福建;35
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 周界 入侵 事件 识别 方法 系统
【权利要求书】:

1.一种周界入侵事件的识别方法,其特征在于,步骤如下:

1)选定适用于已知类型的入侵信号进行识别的网络模型;

2)利用包含多种噪音的已知类型的入侵信号组成的训练集,利用选定的网络模型进行训练,利用训练完成的网络模型对实时采集的入侵信号进行识别;

步骤1)中,选择适用的网络模型的方法如下:

1.1)采集一定数量的已知类型的入侵信号作为训练样本与测试样本,并采用小波变换对训练样本与测试样本进行滤波,再进行短时傅里叶变换,获得对应的时频图;

1.2)利用时频图的图像特征,分别通过不同的网络模型对训练样本进行训练;

1.3)利用网络模型对测试样本进行识别;

1.4)计算在不同的网络模型网络中,训练样本的运算时间、对训练样本的训练时间总和,以及对每个测试样本的识别时间,选定运算时间、训练时间总和、识别时间最短的网络模型;

步骤1.1)中,比较用于短时傅里叶变换的不同的窗函数和窗宽,选择适配已知类型的入侵信号的窗函数和窗;

步骤1.2)中,通过网络模型对训练样本进行训练之前,先选择深度学习优化器,并设定批次大小、迭代次数,初始化网络模型的权值w与偏置值b;然后计算输出值存在的偏差,再计算损失值;根据损失值优化权值w与偏置值b,直至偏差符合要求;

选定的网络模型为Inception-v2结构的卷积神经网络模型。

2.根据权利要求1所述的周界入侵事件的识别方法,其特征在于,已知类型的入侵信号包括人为入侵信号、非人为人侵信号;其中,人为入侵信号包括敲击、摇晃,非人为人侵信号包括刮风、下雨。

3.一种周界入侵事件的识别系统,其特征在于,包括光源、多模光纤、光电二极管、数据采集卡,光源信号经多模光纤、光电二极管后,通过数据采集卡进行数据采集;通过多模光纤感应入侵信号,在入侵信号的影响下采集的数据,基于权利要求1至2任一项所述的识别方法进行识别。

4.根据权利要求3所述的周界入侵事件的识别系统,其特征在于,多模光纤包括依次耦合的前单模光纤段、多模光纤段、后单模光纤段。

5.根据权利要求3所述的周界入侵事件的识别系统,其特征在于,将多模光纤缠绕固定在围成周界的围网上,用于感应入侵信号。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华侨大学,未经华侨大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201911005085.1/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top