[发明专利]基于多源异构数据融合的滑坡不确定模型动态构建方法有效

专利信息
申请号: 201911022612.X 申请日: 2019-10-25
公开(公告)号: CN110837669B 公开(公告)日: 2021-05-28
发明(设计)人: 薛阳;吴益平;苗发盛;李麟玮 申请(专利权)人: 中国地质大学(武汉)
主分类号: G06F30/13 分类号: G06F30/13;G06F30/23;G06F119/14
代理公司: 武汉知产时代知识产权代理有限公司 42238 代理人: 金慧君
地址: 430000 湖*** 国省代码: 湖北;42
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 多源异构 数据 融合 滑坡 不确定 模型 动态 构建 方法
【权利要求书】:

1.一种基于多源异构数据融合的滑坡不确定模型动态构建方法,其特征在于:包括以下步骤:

S101:获取目标滑坡的岩土体力学参数的空间分布特征和分布规律信息;

S102:根据所述目标滑坡的基础参数信息,采用Abaqus软件,建立目标滑坡的有限元基础模型;

S103:根据所述岩土体力学参数的空间分布特征和分布规律信息,结合所述有限元基础模型,基于相关随机场理论方法,建立所述目标滑坡的N个不确定模型;

S104:根据所述N个不确定模型,采用Abaqus有限元软件,基于非侵入式随机有限元方法,开展滑坡数值模拟,得到与目标滑坡上实际检测位置点相对应的水位、地表位移和深部位移时间序列数据;

S105:根据所述的N个不确定模型和所述水位、地表位移和深部位移时间序列数据,分别建立不同时间点的地表位移数据类型智能响应面模型、深部位移数据类型智能响应面模型和水位数据类型智能响应面模型;

S106:利用步骤S103所述方法新生成P个不确定模型,并将这P个不确定模型作为最新输入样本;其中,P根据实际需求设置,且P大于N;

S107:基于自适应条件抽样算法的贝叶斯方法,利用岩土体参数直接信息对对所述P个不确定模型进行反演更新,得到直接信息更新后的P个不确定模型;

S108:将所述更新后的P个不确定模型作为步骤S105所述的不同时间点中初始时间点的地表位移数据类型智能响应面模型、深部位移数据类型智能响应面模型和水位数据类型智能响应面模型的输入样本,并根据对应的预测输出,采用基于自适应条件抽样算法的贝叶斯方法,利用对应时间点的实际监测数据对步骤S107所述的更新后的P个不确定模型进行反演更新,得到初始时间点更新后的P个不确定模型;

然后将初始时间点更新后的P个不确定模型作为下一轮时间点更新的输入样本,进行下一轮时间点的更新;如此循环更新,直到预设的时间点,最终获取所有监测信息动态更新后的更为准确的P个不确定模型;

另外,初始时间点更新后的下一轮时间点的更新均利用与该轮时间点相对应的智能响应面模型,且每一轮时间点更新后的P个不确定模型均作为下一时间点更新时的输入样本。

2.如权利要求1所述的一种基于多源异构数据融合的滑坡不确定模型动态构建方法,其特征在于:步骤S101中,获取目标滑坡的岩土体力学参数的空间分布特征和分布规律信息;具体包括:

S201:基于常规地质勘探与试验手段,获取目标滑坡不同部位岩土体的基础物理信息,并结合目标滑坡的坑探和槽探手段拍摄不同部位的实际照片;同时利用钻探手段获取目标滑坡不同钻孔点不同深度的岩土体样品,并开展室内实验获取相应位置点的岩土力学参数;所述岩土力学参数包括粘聚力和摩擦角;

S202:根据目标滑坡的前期勘察报告记录的不同钻孔点不同深度部位岩土体的颗粒级配和含水状态信息,配置多组重塑样品,每组重塑样品对应一个位置点的颗粒级配和含水状态;

S203:开展多组所述重塑样品的室内非饱和三轴直剪试验,获取目标滑坡的岩土体力学参数,并对剪切前后的重塑样品进行CT扫描,获得扫描照片;其中,所述岩土力学参数包括粘聚力和摩擦角参数;

S204:对步骤S201中的所述实际照片和步骤S203中的所述扫描照片进行二值化处理,识别照片中不同粒径颗粒,进而进行不同重塑样品CT扫描照片的习惯结构规律统计,获取岩土体中的细观特征参数;所述细观特征参数包括:块石的空间分布、块石形貌大小、排列方式与孔隙特征;

S205:根据所述实际照片的二值化处理结果,进行仿真数值模拟,以获取各位置点的岩土力学参数;同时,基于所述细观特征参数,获得细观特征参数的统计规律,并基于所述细观特征参数的统计规律进行随机建模,生成nn个重构试样,进而建立nn个重构试样的数值力学实验,获取不同重塑样品的nn个粘聚力与摩擦角值,然后对每个重塑样品的nn个粘聚力与摩擦角值分别取均值,作为该位置点重塑样品的粘聚力和摩擦角值;采用类似方法获取目标滑坡其它位置点的粘聚力和摩擦角,至此获取了目标滑坡不同位置点的岩土力学参数及其空间分布特征;

S206:对所述空间分布特征进行统计分析,得到目标滑坡的分布规律信息;所述目标滑坡的分布规律信息包括:粘聚力与摩擦角的均值、标准差和概率函数分布类型以及它们之间的相关系数;

步骤S102中,所述基础参数信息包括所述目标滑坡的实际边界条件、载荷施加、基本材料参数和网格划分;其中,所述目标滑坡的网格划分的密度、大小和形状均为根据实际需求预先设置好的。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国地质大学(武汉),未经中国地质大学(武汉)许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201911022612.X/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top